TYPES OF AFFINE TRANSFORMATIONS AND THEIR COMPOSITION
Abstract and keywords
Abstract (English):
Known types of affine transformations which can be received as the resulting transformations when performing a combination as works of two other transformations are considered. Possibility of creation of the considered combinations as in the constructive way, and analytically on the removed dependences of functions of transformation is investigated. "The affine and projective geometry" by means of graphic AutoCAD packages, the COMPASS, or Microsoft Office Visio, and disciplines "Computing geometry" with application of a mathematical Maple package in which combinations of geometrical transformations are carried out by means of multiplication of matrixes is planned to use the received results in educational process when performing settlement and graphic works as students on discipline. These disciplines are studied by students in the direction 09.03.01 – Informatics and computer facilities (a profile: Systems of the automated design) and to the direction 09.03.03 – Applied informatics (a profile: Applied informatics in design). Field of activity of affine geometry from a position of the theory of groups F. Klein respectively are subgroups of affine transformations. In known sources studying of affine transformations from perspective and affine compliances is offered (relationship), compression (stretching), slanting symmetry, shift and their compositions (multiplication, work) are considered further. However, considering relationship on the plane, it is possible to notice that the coefficient of this transformation is negative size. Therefore, at this transformation there is an axial symmetry. Therefore, the purpose of the real work is definitions of such compositions at which performance there is a possibility of modeling of certain known affine transformations as resultants. We will in passing cite: "We will notice synthesis and the analysis, not in mathematical, and in general-logical sense of the word are absolutely equal, and in any research they constantly intertwine with each other; therefore, there can hardly be a speech about providing domination to one of these tools of human thought" (from the minutes of Physical and mathematical society of 31.03.1898, Kazan). In this regard, the received combinations should be considered and from analytical positions which provide modeling with application of information technologies.

Keywords:
compositions of affine transformations, functions of transformations, transformation matrixes, visualization in Visio, a mathematical Maple package.
References

1. Asekritova S., Puchkov I. Using of students’ research scientific work results during the teaching of graphic disciplines. Geometriya i grafika. [Geometry and Grafics]. 1970. V. 1, I. 1: p. 75-76. DOI:https://doi.org/10.12737/483.

2. Asekritova S. Technique of «SAPR Graphic Editors» course teaching. Geometriya i grafika. [Geometry and Grafics]. 1970. V. 1, I. 1: p. 46-48. DOI:https://doi.org/10.12737/473.

3. Boykov A. Computer means of graphic disciplines’ training courses support. Geometriya i grafika. [Geometry and Grafics]. 1970. V. 1, I. 2: p. 29-31. DOI:https://doi.org/10.12737/784.

4. Glagolev N.A. Proektivnaja geometriya [Projective geometry]. Moscow, Vyssh. shk. Publ., 1963. 344 p. (in Russian).

5. Grafskij O.A. Vychislitel´naya geometriya [Computational geometry]. Habarovsk: Izd-vo DVGUPS, 2014. 150 p. (in Russian).

6. Grafskij O.A., Galliulin N.H. Metodicheskie aspekty v uchebnyh kursah po affinnoj, proektivnoj i vychislitel´noj geometrii [Methodological aspects in teaching courses on affine, projective and computational geometry]. Problemy integracii Rossijskogo obrazovanija v mirovoe obrazovatel´noe prostranstvo: Materialy mezhregional´noj nauchno-metodicheskoj konferencii. Habarovsk, Izd-vo DVGUPS Publ., 2008, pp. 20-24. (in Russian).

7. Grafskij O.A. Osnovy affinnoj i proektivnoj geometrii [Basics of affine and projective geometry]. Habarovsk, Izd-vo DVGUPS Publ., 2013. 135 p. (in Russian).

8. Grafskij O.A. Povyshenie kachestva geometricheskoj podgotovki po special´nosti SAPR posredstvom sovershenstvovanija metodiki prepodavanija i organizacii samostojatel´noj raboty studentov [Improving the quality of geometric training in the specialty of CAD by improving teaching methods and organization of independent work of students]. Upravlenie kachestvom obrazovanija i integracii vuzov v mezhdunarodnoe obrazovatel´noe prostranstvo: Sb. nauch. tr. mezhregional´noj nauchno-metodicheskoj konferencii. V 2 t. T. 2. Habarovsk, DVGUPS Publ., 2006, pp. 15-17. (in Russian).

9. Guznenkov, V. Information technologies in graphic disciplines of technical university. Geometriya i grafika. [Geometry and Grafics]. 1970. V. 1, I. 3/4: p. 26-28. DOI:https://doi.org/10.12737/2128.

10. Klejn F. Sravnitel´noe obozrenie novejshih geometricheskih issledovanij («Jerlangenskaja programma»). [A comparative review of the latest geometric studies ("Erlangen program")]. Ob osnovanijah geometrii: Sb. klassicheskih rabot po geometrii Lobachevskogo i razvitiju ee idej; Red. i vstup. st. A.P. Nordena. Moscow, Gos. izd-vo tehniko-teoreticheskoj lit. Publ., 1956. pp. 399-434. (in Russian).

11. Protokol 79-go zasedanija. 31 marta 1898 g. [The Protocol of the 79th meeting. 31 Mar 1898]. Izvestija Fiziko-matematicheskogo obshhestva Imperatorskogo Kazanskogo universiteta. Vtoraja serija. Kazan´, Tipo-litografija Imperatorskogo un-ta Publ., 1898, V. VIII, I. 2, pp. 18-20 (in Russian).

12. Ryzhkov V.V. Lekcii po analiticheskoj geometrii [Lectures on analytic geometry]. Moscow, Izd-vo "Faktorial Press" Publ., 2000. 208 p. (in Russian).

13. Salkov N.А. Descriptive Geometry As the Basis for Analytical Geometry. Geometriya i grafika [Geometry and Grafics]. 2016, V. 4, I. 1: p. 44-54. DOI: 10.12737

14. Sakov N.А., Vyshnyepolskiy V.I. The aims and methods of teaching drawing. Geometriya i grafika [Geometry and Grafics]. 2016, V. 1, I. 2, pp. 8-9. DOI:https://doi.org/10.12737/777.

15. Dmitrieva I., Ivanov G., Murav´ev K., Seregin V. Interdisciplinary connections of descriptive geometry and related sections of higher mathematics. Geometriya i grafika [Geometry and Grafics]. 2013, V. 1, I. 3/4, pp. 8-12. DOI:https://doi.org/10.12737/2124.

16. Solomonov K., Voloshinov D. Constructive geometric modeling as graphic disciplines’ teaching prospect. Geometriya i grafika [Geometry and Grafics]. 2014, V. 1, I. 2, pp. 10-13. DOI:https://doi.org/10.12737/778.

17. Stolbova I. Actual Problems of Graphic Training of Students at Technical High Educational Institutions. Geometriya i grafika [Geometry and Grafics]. 2014, V. 2, I. 1, pp. 30-41. DOI:https://doi.org/10.12737/3846.

18. Stolbova I. Ensuring the Quality of Subject Teaching for Students at the Technical University. Geometriya i grafika [Geometry and Grafics]. 2016, V. 3, I. 4, pp. 27-37. DOI:https://doi.org/10.12737/17348.

19. Chetveruhin N.F. Proektivnaja geometriya [Projective geometry]. Chetveruhin. Moscow, Prosveshhenie Publ., 1969. 368 p. (in Russian).

20. Shcheglova A. Using of computer technologies during the studying of graphic disciplines. Geometriya i grafika [Geometry and Grafics]. 1970, V. 1, I. 1, pp. 73-74. DOI:https://doi.org/10.12737/482.

21. Jaglom I.M. Idei i metody affinnoj i proektivnoj geometrii. Ch.1. Affinnaja geometriya [The ideas and methods of affine and projective geometry. Part 1. Affine geometry]. Moscow, Uchpedgiz Publ., 1962. 247 p. (in Russian).

Login or Create
* Forgot password?