Irkutsk, Russian Federation
Irkutsk, Russian Federation
We present results of a study of mid-latitude auroras. The study is based on optical measurements and theoretical modeling. The modeling shows that precipitation can indirectly generate airglow in red and green lines of atomic oxygen by increasing rates of ion formation and heating of thermal electrons. This causes an increase in the rate of dissociative recombination and thermal-electron-collision excitation of the 1D and 1S levels.
Ionospheric disturbance, Upper airglow, Geomagnetic storms, Modeling
1. Banks P.M., Chappell C.R., Nagy A.F. A new model for the interaction of auroral electrons with the atmosphere: Spectral degradation, backscatter, optical emission, and ionization. J. Geophys. Res. 1974, vol. 79, iss. 10, pp. 1459-1470.
2. Hasegawa A. Particle acceleration by MHD surface wave and formation of aurorae. J. Geophys. Res. 1976, vol. 81, iss. 28, pp. 5083-5090.
3. Goertz C.K. Kinetic Alfv´en waves on auroral field lines. Planet. Space Sci. 1984, vol. 32, pp. 1387-1392.
4. Krinberg I.A. Kinetika elektronov v ionosfere i atmosfere Zemli [Kinetics of electrons in Earth´s ionosphere and plasmasphere]. Moscow, Nauka Publ., 1978, 215 p. (In Russian).
5. Krinberg I.A., Tashchilin A.V. Ionosfera i plazmosfera [Ionosphere and plasmasphere]. Moscow, Nauka Publ., 1984. 188 p. (In Russian).
6. Leonovich A.S., Mazur V.A. Resonance excitation of standing Alfven waves in an axisymmetric magnetosphere (monochromatic oscillations). Planet. Space Sci. 1989, vol. 37, pp. 1095-1108.
7. Leonovich L.A., Mikhalev A.V., Leonovich V.A. Manifestation of geomagnetic disturbances in mid-latitude upper atmosphere airglow. Solnechno-zemnaya fizika [Solar-Terrestrial Phys.]. 2012, vol. 20, pp. 109-115. (In Russian).
8. Leonovich L.A., Tashchilin A.V., Leonovich V.A. Response of 557.7 and 630 nm atomic oxygen emissions to sharp variations in solar wind parameters. Atmos. Ocean. Optics. 2015, vol. 28, no. 4, pp. 376-380.
9. de Meneses F.C., Muralikrishna P., Clemesha B.R. Height profiles of OI 630 nm and OI 557.7 nm airglow intensities measured via rocket-borne photometers and estimated using electron density data: comparison. Geofisica Internacional. 2008, vol. 47, no. 3, pp. 161-166.
10. Fox J.L., Sung K.Y. Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res.: Space Phys. 2001, vol. 106, iss. A10, pp. 21305-21335.
11. Hierl P.M., Dotan I., Seeley J.V., et al. Rate constants for the reactions of O+ with N2 and O2 as a function of temperature (300-1800 K). J. Chem. Phys. 1997, vol. 106, no. 9, pp. 3540-3544.
12. Mantas G.P. Large 6300-Å airglow intensity enhancements observed in Ionosphere Heating Experiments are excited by thermal electrons. J. Geophys. Res.: Space Phys. 1994, vol. 99, iss. A5, pp. 8993-9002.
13. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, vol. 107, iss. A12, pp. SIA 15-1-SIA 15-16.
14. Rees M.H. Physics and Chemistry of the Upper Atmosphere. Cambridge University Press., 1989, 289 p.
15. Richards P.G. Reexamination of ionospheric photochemistry. J. Geophys. Res. 2011, vol. 116, iss. A8, A08307.
16. Schunk R., Nagy A. Ionospheres . Cambridge University Press., 2009, 628 p.