Belgorod, Belgorod, Russian Federation
GRNTI 06.73 Финансовая наука. Денежные и налоговые теории. Кредитно-финансовые институты
BBK 65 Экономика. Экономические науки
This work is devoted to the analysis and evolution of the value function of American type options on a dividend paying stock under jump diffusion processes. An equivalent form of the value function is obtained and analyzed. Moreover, variational inequalities satisfied by this function are investigated. These results can be used to investigate the optimal hedging strategies and optimal exercise boundaries of the corresponding options.
american option, jump-diffusion model, poisson process, locally lipschitz continuity, weak derivatives.
1. Black F., Scholes M. The pricing of op-tions and corporate liabilities. The Journal of Political Economy. 1973. V. 1. P. 637-654.
2. Chiarella C., Kang B. The evaluation of American compound option prices under stochastic volatility and stochastic interest rates. The Journal of Computational Finance. 2011. V.14. № 9. P. 1-21.
3. El Karoui N.E., Jeanblanc Picqu M., Shreve S.E. Robustness of the Black and Scholes formula. Mathematical Finance. 1998. V. 8. № 2. P. 93-126.
4. Elliot R., Kopp P. Option Pricing and Hedge Portfolio for Poisson Process. Stochastic Analysis and Applications. 1990. V. 8. P. 157-167.
5. Glowinsky R., Lions J.L., Treamoliyeres R. Numerical Analysis of Variational Inequalities. Amsterdam: North-Holland Publishing Company, New York, 2011.
6. Hussain S., Shashiashvili M. Discrete time hedging of the American option. Mathematical Finance. 2010. V. 20. № 4. P. 647-670.
7. Hussain S., Rehman N. Estimate for the discrete time hedging error of the American option on a dividend paying stock. Math. Inequal. Appl. 2012. V. 15. P. 137-163.
8. Hussain S., Rehman N. Regularity of the American Option Value Function in Jump-Diffusion Model. Journal of Computational Analysis and Applications. 2017. V. 22. P. 286-297.
9. Israel V.P., Rincon M.A. Variational ine-qualities applied to option market problem. Ap-plied Mathematics and Computation. 2008. V. 201. № 1. P. 384-397.
10. Jaillet P., Lamberton D., Lapeyre B. Variational inequalities and the pricing of American options. Acta Applicandae Mathematica. 1990. V. 21. № 3. P. 263-289.
11. Karatzas I., Shreve S.E. Methods of mathematical finance. Springer Science and Business Media, 1998.
12. Lamberton D., Lapeyre B. Stochastic Calculus Applied to Finance. UK: Chapman and Hall, 1997.
13. Leduc G. Can High-Order Convergence of European Option Prices be Achieved with Common CRR-Type Binomial Trees?. Bulletin of the Malaysian Mathematical Sciences Society. 2015. DOIhttps://doi.org/10.1007/s40840-015-0221-2. P. 1-14.
14. Pham H. Optimal stopping, free boundary, and American option in a jump diffusion model. Applied Mathematics and Optimization. 1997. V. 35. № 2. P.145-164.
15. Rehman N., Hussain S., Wasim Ul-Haq. Sensitivity analysis of the optimal exercise boundary of the American put option. Georgian Mathematical Journal. 2016. V. 23. № 3. P.429-433.
16. Rehman N., Shashiashvili M. The American Foreign Exchange option in Time-Dependent One-Dimensional Diffusion Model. Appl. Math Optim. 2016. V. 59. № 3. P. 329-363.
17. Royden H.L. Real analysis. New Delhi: Macmillan, Prentice-Hall of India, 1997.
18. Shreve, S.E. Stochastic Calculus for Fi-nance. V. I. New York: Springer, 2004.
19. Shreve S.E. Stochastic Calculus for Fi-nance. V. II. New York: Springer, 2004.
20. Situ R. Theory of Stochastic Differential Equation with Jumps and Applications. New York: Springer, 2012.
21. Zhang X.L. Numerical analysis of American option pricing in a jump diffusion model. Mathematics of Operations Research. 1997. V.22. № 3. P. 668-690.