from 01.10.2008 until now
Russian Federation
Moskva, Moscow, Russian Federation
Russian Federation
Moskva, Moscow, Russian Federation
Gaspard Monge wrote: "The charm that accompanies science can overcome man's natural aversion to the mind intenseness and make them find pleasure in their mind’s exercise that for most of people seems as tiresome and boring occupation". He had written it including descriptive geometry. To exercise one’s mind — what is this but the brain building, and science is accompanied just by heuristic thinking, so that brings new discoveries for an intellectual. The most difficult in descriptive geometry is the ability to represent a spatial geometric figure or such figures’ combination on two images. It is clear that the usual problems of a course are resolved within the academic discipline, and are typical ones, readily understandable for any student of a technical high educational institution, while the tasks at Academic Olympics, even if these tasks are destined for use inside a high educational institution, are more difficult. If for a solving of problems from an ordinary problem book on descriptive geometry’s course it is enough to know literally a few algorithms, for tasks of increased difficulty that is not enough. The Academic Olympics’ functions reveal such a feature of those on descriptive geometry as their inseparable property to be a catalyst for development of heuristic thinking. Here there is not only the disclosure of students’ abilities to solve ordinary geometric problems, but the ability to solve problems of heuristic direction in general. It is obvious that knowledge of typical problems on the course of descriptive geometry is absolutely insufficiently, as well as it is insufficiently to know school geometry, that currently almost is not teaching in schools — now it is necessary to have not only the spatial perception, but at least the beginnings of heuristic thinking. This, plus the mobilization of all mental resources, contributes both to the solution of given geometric problems, and further solving other problems in the related areas of science and technology.
descriptive geometry, Academic Olympic on descriptive geometry, subject Olympics, education quality.
Вот что писал о науке, в том числе и о начертательной геометрии, ее создатель Г. Монж [21]: «Очарование, сопровождающее науку, может победить свойственное людям отвращение к напряжению ума и заставить их находить удовольствие в упражнении
своего разума, что большинству людей представляется утомительным и скучным занятием».
1. Al'shakova E.L. Organizacija i provedenie olimpiad po nachertatel'noj geometrii v Jugo-Zapadnom gosudarstvennom universitete [The Organization and carrying out of Olympiads on descriptive geometry in the South-Western state University]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 1, pp. 38-41. (in Russian). DOI:https://doi.org/10.12737/2085.
2. Bojkov A.A., Potapova L.A. O krugovyh orbitah planet [Planets on circular orbits]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 2, pp. 28-30. (in Russian). DOI:https://doi.org/10.12737/795.
3. Borovikov I.F. Nachertatel'naja geometrija i inzhenernoe obrazovanie [Descriptive geometry and engineering education]. Mashinostroenie i inzhenernoe obrazovanie [Mechanical engineering and engineering education]. 2009, I. 1, pp. 62-67. (in Russian)
4. Vel'tishhev V.V. 3D-olimpiady i komp'juternoe proektirovanie v programmah tehnicheskih universitetov [3D contest and computer engineering at the technical universities]. Geometrija i grafika [Geometry and graphics]. 2015, V. 3, I. 2, pp. 52-59. (in Russian). DOI:https://doi.org/10.12737/12169.
5. Vyshnepol'skij V.I., Voloshin-Chelpan Je.K., Pavlova A.A. Istorija moskovskih gorodskih olimpiad po nachertatel'noj geometrii i inzhenernoj grafike [History of the Moscow city Olympiads on descriptive geometry and engineering graphics]. Nachertatel'naja geometrija, inzhenernaja i komp'juternaja grafika. Mezhdunarodnyj mezhvuzovskij nauchno- metodicheskij sbornik trudov kafedr graficheskih disciplin [Descriptive geometry, engineering and computer graphics. International Interuniversity Scientific and Methodical Collection of Works of the Departments of Graphic Disciplines]. Nizhnij Novgorod: Poligrafcentr NNGASU Publ., 2000, I. 5, pp. 29-32. (in Russian)
6. Vyshnepol'skij V.I., Voloshin-Chelpan Je.K. Metodika provedenija regional'noj olimpiady [The methodology of the regional competition]. Aktual'nye voprosy sovremennoj inzhenernoj grafiki: Tezisy dokladov Vserossijskoj nauchnometodicheskoj konferencii [Topical issues of modern engineering graphics: Abstracts of the All-Russian Scientific and Methodological Conference]. Rybinsk: RGATA Publ., 2000, pp. 11-12. (in Russian)
7. Vyshnepol'skij V.I., Voloshin-Chelpan Je.K. Kriterii podgotovki komandy VUZa k olimpiade [Criteria for the preparation of University teams for the Olympics]. Aktual'nye voprosy sovremennoj inzhenernoj grafiki: Tezisy dokladov Vserossijskoj nauchno-metodicheskoj konferencii [Topical issues of modern engineering graphics: Abstracts of the All-Russian Scientific and Methodological Conference]. Rybinsk: RGATA Publ., 2000, pp.18-20. (in Russian)
8. Vyshnepol'skij V.I. Metodicheskie osnovy podgotovki i provedenija olimpiad po graficheskim disciplinam v vysshej shkole. Kand. Diss. [Methodical bases of preparation and holding competitions in the graphic disciplines in higher education. Cand. Diss.]. Moscow, 2000. (in Russian)
9. Vyshnepol'skij V.I. Moskovskie gorodskie olimpiady po inzhenernoj grafike [Moscow city Olympiad on engineering graphics]. Geometrija i grafika [Geometry and graphics]. Moscow, MUTHT Publ., 2013, V. 1, I. 1, pp. 179-187. (in Russian). DOI:https://doi.org/10.12737/2100.
10. Vyshnepol'skij V.I. Otkrytaja Vserossijskaja studencheskaja olimpiada po nachertatel'noj geometrii, inzhenernoj i komp'juternoj grafike 2015 goda [Open all-Russian student Olympiad on descriptive geometry, engineering and computer graphics, 2015]. Geometrija i grafika [Geometry and graphics]. 2016, V. 4, I. 1, pp. 73-89. (in Russian). DOIhttps://doi.org/10.12737/18060.
11. Vyshnepol'skij V.I. Funkcii olimpiad [Function Olympiads]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 3-4, pp. 44-47. (in Russian). DOI:https://doi.org/10.12737/2133.
12. Vyshnepol'skij V.I. Rezul'taty moskovskih gorodskih olimpiad po nachertatel'noj geometrii i inzhenernoj grafike [The results of the city Olympiads on descriptive geometry and engineering graphics]. Nachertatel'naja geometrija, inzhenernaja i komp'juternaja grafika. Mezhdunarodnyj mezhvuzovskij nauchno-metodicheskij sbornik trudov kafedr graficheskih disciplin [Descriptive geometry, engineering and computer graphics. International Interuniversity Scientific and Methodical Collection of Works of the Departments of Graphic Disciplines]. Nizhnij Novgorod: Poligrafcentr NNGASU Publ., 2000, I. 5, pp. 33-37. (in Russian)
13. Gerasimov V.A., Shheglova A.V. Vserossijskie olimpiady po nachertatel'noj geometrii, inzhenernoj i komp'juternoj grafike v Brjanskom gosudarstvennom tehnicheskom universitete [All-Russian Olympiad on descriptive geometry, engineering and computer graphics in the Bryansk state technical University]. Sbornik trudov 2-j Vserossijskoj nauchno-metodicheskoj konferencii po inzhenernoj geometrii i komp'juternoj grafike [The collection of works of the 2nd All-Russian scientific methodical conference on engineering geometry and computer graphics]. Moscow, 2009, pp. 100-102. (in Russian)
14. Zhiharev L.A. Obobshhenie na trehmernoe prostranstvo fraktalov Pifagora i Koha. Chast' 1 [The Generalization to three-dimensional space of fractal Pythagoras and Koch. Part 1]. Geometrija i grafika [Geometry and graphics]. 2015, V. 3, I. 3, pp. 24-37. (in Russian). DOI:https://doi.org/10.12737/14417.
15. Kashheeva P., Tokarev V., Shevelev Ju. Organizacija, provedenie i itogi otkrytoj studencheskoj olimpiady «Inzhenernaja i komp'juternaja grafika» v FGBOU VPO «RGATU imeni P.A. Solov'eva» [The Organization, conduct and results of an open student competition "Engineering and computer graphics" in the FSBEI HPE "RGATU named after P.A. Soloviev"]. V mezhdunarodnaja internet-konferencija [5th International Internet Conference]. Available at: http:// dgng.pstu.ru/conf2015/papers/ (in Russian)
16. Levickij V.S. O razvitii prostranstvennyh predstavlenij v kurse nachertatel'noj geometrii [On the development of spatial representations in the course of descriptive geometry]. Sbornik nauchno-metodicheskih statej po nachertatel'noj geometrii i inzhenernoj grafike [Collection of scientific and methodical articles on descriptive geometry and engineering graphics]. Moscow, 1978, I. 8, pp. 3-6. (in Russian)
17. Losev N.V. 200 olimpiadnyh zadach po nachertatel'noj geometrii [200 programming problems of descriptive geometry]. Moscow, Vysshaja shkola Publ., 1992. 126 p. (in Russian)
18. Mel'nichenko N.P. Olimpiada kak sposob aktivacii uchebnogo processa [The Olympics as a way of activation of the educational process]. Sbornik trudov Mezhdunarodnoj nauchno-metodicheskoj konferencii po inzhenernoj geometrii i komp'juternoj grafike [Proceedings of the International Scientific and Methodical Conference on Engineering Geometry and Computer Graphics]. Moscow, 2010, pp. 144- 148. (in Russian)
19. Metodicheskie ukazanija po organizacii i provedeniju studencheskih olimpiad i konkursov v vuzah Moskvy [Guidelines for the organization and conduct of student contests and competitions at the universities of Moscow]. Moscow, Moskovskij aviacionnyj institute Publ., 1981. 52 p. (in Russian)
20. Mokrecova L.O., Arhipkin M.V., Golovkina V.B. Olimpijskij vektor v inzhenernoj grafike MISiS [Olympic vector in engineering graphics Misa]. Sbornik trudov Vserossijskoj nauchno-metodicheskoj konferencii po inzhenernoj geometrii i komp'juternoj grafike [Collection of Proceedings of the All-Russian Scientific and Methodological Conference on Engineering Geometry and Computer Graphics]. Moscow, 2009, pp. 18-21. (in Russian)
21. Monzh G. Nachertatel'naja geometrija [Descriptive geometry]. Akademiya Nauk SSSR Publ., 1947. 292 p.
22. Peklich V.A. Zadachi Moskovskih i vserossijskih olimpiad po nachertatel'noj geometrii [Objectives Moscow and all-Russian Olympiads on descriptive geometry]. Moscow, Associaciya stroitel'nyh vuzov Publ., 2003. (in Russian)
23. Posvjanskij A.D., Leont'ev A.I., Ognivenko V.M. 50 zadach povyshennoj trudnosti po nachertatel'noj geometrii [50 tasks of increased difficulty on descriptive geometry]. Kalinin, 1970. 52 p. (in Russian)
24. Savel'ev Ju.P., Zhernosekov G.I., Tihonov-Bugrov D.E. Olimpiada - shkola tvorchestva [Olympiad - school of art]. Vestnik vysshej shkoly [Herald of Higher School]. 1987, I. 6, pp. 61-63. (in Russian)
25. Sal'kov N.A. Mesto nachertatel'noj geometrii v sisteme geometricheskogo obrazovanija tehnicheskih vuzov [Place of descriptive geometry in the geometric system of education of technical universities]. Geometrija i grafika [Geometry and graphics]. 2016, V. 4, I. 3, pp. 53-61. (in Russian). DOI:https://doi.org/10.12737/21534.
26. Salkov N.A. Nachertatel'naja geometrija [Descriptive geometry]. Moscow, INFRA-M Publ., 2013. 184 p. (in Russian)
27. Sal'kov N.A. Nachertatel'naja geometriya do 1917 goda [Descriptive Geometry until 1917]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 2, pp. 18-20. (in Russian). DOI:https://doi.org/10.12737/780.
28. Sal'kov N.A., Vyshnepol'skij V.I. O vozrastajushhej roli geometrii [On the growing role of geometry]. Zhurnal estestvennonauchnyh issledovanij [Journal of Natural Science Studies]. «INFRA-M» Publ., 2017, V. 2, I. 2, pp. 53-61. Available at: https://naukaru.editorum.ru/ru/nauka/article/ 16413/view (in Russian)
29. Sal'kov N.A., Kadykova N.S. Organizacija studencheskih predmetnyh olimpiad vysshego urovnja [Organization of student's competitions of the highest level]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 1, pp. 44-47. (in Russian). DOI:https://doi.org/10.12737/2099.
30. Sal'kov N.A. Predmetnye olimpiady kak pokazatel' kachestva obuchenija [Olympiad as an indicator of the quality of education]. Geometrija i grafika [Geometry and graphics]. 2015, V. 3, I. 4, pp. 45-54. (in Russian). DOI:https://doi.org/10.12737/17350.
31. Sal'kov N.A. Sbornik zadach po kursu nachertatel'noj geometrii [A collection of problems in the course of descriptive geometry]. Moscow, INFRA-M Publ., 2013. 127 p. (in Russian)
32. Seregin V.I. Mezhdisciplinarnye svjazi nachertatel'noj geometrii i smezhnyh razdelov vysshej matematiki [Interdisciplinary team of descriptive geometry and related topics of higher mathematics]. Geometrija i grafika [Geometry and graphics]. 2014, V. 2, I. 3-4, pp. 8-12. (in Russian). DOI:https://doi.org/10.12737/2124.
33. Seregin V.I., Ivanov G.S., Borovikov I.F. Testovye zadanija po osnovam trehmernogo modelirovanija [Tests on the basics of three-dimensional modeling]. Geometrija i grafika [Geometry and graphics]. 2016, V. 5, I. 1, pp. 73-81. (in Russian). DOI:https://doi.org/10.12737/25126.
34. Suprun L.I. Olimpiady - odin iz sposobov povyshenija akademicheskoj aktivnosti studentov [The Olympics is one way of increasing the academic activity of students]. Aktual'nye voprosy graficheskogo obrazovanija molodezhi: Tezisy dokladov Vserossijskoj nauchno - metodicheskoj konferencii [Actual issues of graphic education of youth: Abstracts of the All - Russian Scientific and Methodical Conference]. Rybinsk: RGAGA Publ., 1998, pp. 11-12. (in Russian)
35. Yakunin V.I. Teoreticheskie osnovy formirovaniya modeley poverkhnostey [The theoretical basis for the formation of surface models]. Moscow, MAI Publ., 1985. (in Russian)
36. Tihonov-Bugrov D.E. Olimpiada po nachertatel'noj geometrii v Sankt-Peterburge: istorija, problemy, perspektivy [Olympiad on descriptive geometry in St. Petersburg: history, problems, prospects]. Aktual'nye voprosy sovremennoj inzhenernoj grafiki: Tezisy dokladov Vserossijskoj nauchno-metodicheskoj konferencii [Topical issues of modern engineering graphics: Abstracts of the All-Russian Scientific and Methodical Conference]. Rybinsk: RGATA Publ., 2000, p. 6. (in Russian)
37. Chetveruhin N.F. O razvitii prostranstvennyh predstavlenij i ponjatij u uchashhihsja v svjazi s vypolneniem i chteniem chertezhej [On the development of spatial representations and concepts of students in connection with the execution and reading of drawings]. Sb. «Formirovanie i razvitie prostranstvennyh predstavlenij u uchashhihsja» [Collection "Formation and development of spatial representations for students"]. Moscow, 1964. (in Russian)
38. Shebashev V.E. Predmetnye olimpiady kak sredstvo priobshhenija studentov k nauchnoj dejatel'nosti [Olympiad as a means of familiarizing students to scientific activity]. Sbornik trudov Vserossijskoj nauchno-metodicheskoj konferencii po inzhenernoj geometrii i komp'juternoj grafike [Collection of Proceedings of the All-Russian Scientific and Methodical Conference on Engineering Geometry and Computer Graphics]. Moscow, 2008, pp. 15-17. (in Russian)
39. Jemanov S. L. Trebovanija i process sozdanija olimpiadnyh zadach po nachertatel'noj geometrii [The requirements and the process of creating programming problems of descriptive geometry]. Sbornik trudov Mezhdunarodnoj nauchno-metodicheskoj konferencii po inzhenernoj geometrii i komp'juternoj grafike [Collection of Proceedings of the All-Russian Scientific and Methodical Conference on Engineering Geometry and Computer Graphics]. Moscow, 2010, pp. 152-156. (in Russian)