ELECTRON RADIATION BELT DYNAMICS DURING MAGNETIC STORMS AND IN QUIET TIME
Rubrics: REVIEWS
Abstract and keywords
Abstract (English):
The paper discusses the dynamics of the outer electron belt, adiabatic and nonadiabatic mechanisms of replenishment and losses of energetic electrons. Under undisturbed conditions, the outer electron belt gradually empties: in the inner magnetosphere due to electron precipitation in the atmosphere and in the quasi-trapping region due to losses at the magnetopause because drift shells of electrons are not closed there. The latter process does not occur in normal years due to the masking replenishment by freshly accelerated particles, but in years of extremely low activity it leads to a significant decrease in the electron population of the belt. During the magnetic storm main phase, the first reason for the decrease in the electron flux intensity is the adiabatic cooling associated with conservation of adiabatic invariants and complemented by precipitation of electrons into the atmosphere and their dropout at the magnetopause. Electron flux increases involve EB electron injection by the induction electric field of substorm activation and by the large-scale solar wind electric field, with pitch energy diffusion along with adiabatic heating in the recovery phase. The rate of electron flux recovery after a storm is determined by the ratio of nonadiabatic increases and losses; hence the electron flux represents a continuous series from low to very high values. The combination of these processes determines the individual character of radiation belt development during each magnetic storm and the behavior of the belt in the quiet time.

Keywords:
magnetosphere, electrons, radiation belt, replenishment and losses.
Text
Publication text (PDF): Read Download

ВВЕДЕНИЕ

В существующих обзорах по радиационным поясам (РП) [Parks, Winkler 1968; Vernov et al., 1969; Friedel et al., 2002; Millan, Thorne, 2007; Shprits et al., 2008а] достаточно подробно описывается как структура РП, так и его формирование. Согласно принятой теории [Тверской, 1964, 1965], формирование РП объясняется сочетанием медленной радиальной диффузии электронов под действием небольших по величине импульсов магнитного поля с потерями в атмосфере из-за питч-угловой диффузии. В принципе, это объясняет наблюдаемую пространственную структуру захваченных электронов с провалом между внутренним и внешним РП.

Во время магнитных бурь этот стройный порядок нарушается, происходят динамические вариации, понижения и повышения потоков энергичных электронов. Потоки энергичных электронов-«киллеров» привлекают повышенное внимание исследователей, появляются работы, посвященные предсказанию их средних или пиковых значений [Li et al., 2001; Simms et al., 2016] (см. также обзор [Потапов, 2017]).

Большое число работ посвящено анализу динамики РП во время магнитных бурь [Baker et al., 1997; Li et al., 1997; Reeves et al., 1998; Yu et al., 2015; Hwang et al., 2015; Turner et al., 2017], среди них существенную часть составляют работы, выполненные в НИИЯФ МГУ [Вернов и др., 1965; Кузнецов и др., 1966; Бахарева, 2003; Иванова и др., 2000; Калегаев и др., 2015; Antonova, 2005; Lazutin, 2012; Kalegaev, Vlasova, 2014; Dmitriev et al., 2010, 2014; Slivka et al., 2006; Tverskaya et al., 2005; Vernov et al., 1969]. В связи с этим нам представляется целесообразным сделать обзор современных представлений о динамике РП. Заметим, что обзор создавался в значительной мере на основе работ, выполненных в НИИЯФ МГУ.

В обзоре мы сначала опишем динамику РП во время магнитных бурь, затем остановимся на механизмах пополнения и потерь энергичных электронов и в завершение рассмотрим поведение РП в спокойное время. Мы ориентируемся на читателя, знакомого с базовыми понятиями: с характером движения частиц и адиабатическими инвариантами, динамикой полей и токов во время магнитных бурь и т. п.

References

1. Anderson K.A. Balloon measurements of X rays in the auroral zone. Auroral Phenomena. Ed. M. Walt. Stanford University Press, Stanford, California, 1965, pp. 46-83.

2. Antonova E.E. Magnetospheric substorms and the sources of inner magnetosphere particle acceleration. The Inner Magnetosphere: Physics and Modeling. 2005, pp. 105-111. (Geophys. Monograph Ser., vol. 155). DOI:https://doi.org/10.1029/155GM12.

3. Bakhareva N.F. Nonstationary statistical acceleration of relativistic particles and their role during magnetic storms. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2003, vol. 43, pp. 737-744. (In Russian).

4. Baker D.N., Li X., Turner N., Allen J.H., Bargatze L.F., Blake J.B., Sheldon R.B., Spence H.E., Belian R.D., Reeves G.D., Kanekal S.G., Klecker B., Lepping R.P., Ogilvie K., Mewaldt R.A., Onsager T., Singer H.J., Rostoker G. Recurrent geomagnetic storms and relativistic electron enhancements in the outer magnetosphere: ISTP coordinated measurements. J. Geophys. Res. 1997, vol. 102, pp. 14,141-14,148. DOI: 10.1029/ 97JA00565.

5. Califf S., Li X., Zhao H. The role of the convection electric field in filling the slot region between the inner and outer radiation belts. J. Geophys. Res. 2017, vol. 122, pp. 2051-2068. DOI:https://doi.org/10.1002/2016JA023657.

6. Claudepierre S.G., Reeves G.D., O’Brien T.P., Fennell J.F., Blake J.B., Clemmons J.H., Looper M.D., Mazur J.E., Roeder J.L., Turner D.L. The hidden dynamics of relativistic electrons (0.7-1.5 MeV) in the inner zone and slot region. J. Geophys. Res. 2017, vol. 122, pp. 3127-3144. DOI: 10.1002/ 2016JA023719.

7. Daibog E.I., Kechkemeti K., Lazutin L.L., Logachev Yu.I., Surova G.M. Relativistic electrons in the Earth’s tail at the solar activity minimum. Izvestiya RAN. Seriya Fizicheskaya [Bulletin of the Russian Academy of Sciences: Physics]. 2015, vol. 79, no. 5, pp. 701-703. DOI:https://doi.org/10.7868/S0367676515050191. (In Russian).

8. Demekhov A.G., Trakhtengerts V.Yu., Rycroft M.J., Nunn D. Electron acceleration in the magnetosphere by whistler-mode waves of varying frequency. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2006, vol. 46, no. 6, pp. 711-716. (In Russian).

9. Dmitriev A.V., Chao J.-K. Dependence of geosynchronous relativistic electron enhancements on geomagnetic parameters. J. Geophys. Res. 2003, vol. 108, pp. 1388. DOI:https://doi.org/10.1029/2002JA009664.

10. Dmitriev A.V., Jayachandran P.T., Tsai L.-C. Elliptical model of cutoff boundaries for the solar energetic particles measured by POES satellites in December 2006. J. Geophys. Res. 2010, vol. 115, A12244. DOI:https://doi.org/10.1029/2010JA015380.

11. Dmitriev A.V., Suvorova A.V., Chao J.K., Wang C.B., Rastaetter L., Panasyuk M.I., Lazutin L.L., Kovtyukh A.S., Veselovsky I.S., Myagkova I.N. Anomalous dynamics of the extremely compressed magnetosphere during 21 January 2005 magnetic storm. J. Geophys. Res. 2014, vol. 119, iss. 2, pp. 877-896. DOI:https://doi.org/10.1002/2013JA019534.

12. Elkington S.R., Hudson M K., Chan A.A. Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillations. Geophys. Res. Lett. 1999, vol. 26, iss. 21, pp. 3273-3276. DOI:https://doi.org/10.1029/1999GL003659.

13. Foster J.C., Erickson P.J., Omura Y., Baker D.N., Klet-zing C.A., Claudepierre S.G. Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus. J. Geophys. Res. 2017, vol. 122, pp. 324-339. DOI: 10.1002/ 2016JA023429.

14. Friedel R.H.W., Reeves G.D., Obara T. Relativistic electron dynamics in the inner magnetosphere - a review. J. Atmos. Sollat-Terr. Phys. 2002, vol. 64, iss. 2, pp. 265-282. DOI: http://dx.doi.org/10.1016/S1364-6826(01)00088-8.

15. Gabrielse C., Harris C., Angelopoulos V., Artemyev A., Runov A. The role of localized inductive electric fields in electron injections around dipolarizing flux bundles. J. Geo-phys. Res.: Space Phys. 2016, vol. 121, pp. 9560-9585. DOI:https://doi.org/10.1002/2016JA023061.

16. Gabrielse C., Angelopoulos V., Harris C., Artemyev A., Kepko L., Runov A. Extensive electron transport and energization via multiple, localized dipolarizing flux bundles. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 5059-5076. DOI:https://doi.org/10.1002/2017JA023981.

17. Horne R.B., Thorne R.M. Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett. 1998, vol. 25, iss. 15, pp. 3011-3014. DOI:https://doi.org/10.1029/98GL01002.

18. Horne R.B., Thorne R.M. Relativistic electron acceleration and precipitation during resonant interactions with whistler mode chorus. Geophys. Res. Lett. 2003, vol. 30, iss. 10, 1527. DOI:https://doi.org/10.1029/2003GL016973.

19. Horne R.B., Thorne R.M., Glauert S.A., Albert J.M., Meredith N.P., Anderson R.R. Timescale for radiation belt electron acceleration by whistler mode chorus waves. J. Geophys. Res. 2005, vol. 110, A03225. DOI: 10.1029/ 2004JA010811.

20. Hudson M.K., Baker D.N., Goldstein J., Kress B.T., Paral J., Toffoletto F.R., Wiltberger M. Simulated magnetopause losses and Van Allen Probe flux dropouts. Geophys. Res. Lett. 2014, vol. 41, pp. 1113-1118. DOI: 10.1002/ 2014GL059222.

21. Hwang J., Choi E.-J., Park J.-S., Fok M.C., Lee D.Y., Kim K.C., Shin D.K., Usanova M.E., Reeves G.D. Comprehensive analysis of the flux dropout during 7-8 November 2008 storm using multisatellite observations and RBE model. J. Geophys. Res. 2015, vol. 120, iss. 6, pp. 4298-4312. DOI:https://doi.org/10.1002/2015JA021085.

22. Ivanova T.A., Pavlov N.N., Rezman S.Ya., Rubinshtein I.A., Sosnovets E.N., Tverskaya L.V. Dynamics of the outer radiation belt of relativistic electrons in the solar activity minimum. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2000, vol. 40, no. 1, pp. 13-18.

23. Jaynes A.N., Li X., Schiller Q.G., Blum L.W., Tu W., Turner D.L., Ni B., Bortnik J., Baker D.N., Kanekal S.G., Blake J.B., Wygant J. Evolution of relativistic outer belt electrons during an extended quiescent period. J. Geophys. Res. 2014, vol. 119, iss. 12, pp. 9558-9566. DOI: 10.1002/ 2014JA020125.

24. Jaynes A.N., Baker D.N., Singer H.J., Rodriguez J.V., Loto'aniu T.M., Ali A.F., Elkington S.R., Li X. Kanekal S.G., Fennell J.F., Li W., Thorne R.M., Kletzing C.A., Spence H.E., Reeves G.D. Source and seed populations for relativistic electrons: their roles in radiation belt changes. J. Geophys. Res. 2015, vol. 120, iss. 9, pp. 7240-7254. DOI: 10.1002/ 2015JA021234.

25. Kabin K., Kalugin G., Donovan E., Spanswick E. Particle energization by a substorm depolarization. J. Geophys. Res. 2017, vol. 122, pp. 349-367. DOI:https://doi.org/10.1002/2016JA023459.

26. Kalegaev V.V., Vlasova N.A. The Earth’s magnetosphere response to interplanetary medium conditions on January 21-22, 2005 and on December 14-15, 2006. Adv. Space Res. 2014, vol. 54, pp. 517-527. DOI:https://doi.org/10.1016/j.asr.2013.11.015.

27. Kalegaev V.V., Vlasova N.A., Peng J. Magnetosphere dynamics during 21-22.01.2005 and 14-15.12.2006 magnetic storms. Kosmicheskie issledovaniya [Cosmic Reseach]. 2015, vol. 53, no. 2, pp. 105-117. DOI:https://doi.org/10.7868/S002342061502003X. (In Russian).

28. Kataoka R., Miyoshi Y. Why are relativistic electrons persistently quiet at geosynchronous orbit in 2009? Space Weather. 2010, vol. 8, S08002. DOI:https://doi.org/10.1029/2010SW000571.

29. Kim H.J., Chan A.A. Fully adiabatic changes in stormtime relativistic electron fluxes. J. Geophys. Res. 1997, vol. 102, p. 22,107. DOI:https://doi.org/10.1029/97JA01814.

30. Kim K.C., Lee D.-Y., Kim H.-J., Lyons L.R., Lee E.S., Oztürk M.K., Choi C.R. Numerical calculations of relativistic electron drift loss effect. J. Geophys. Res. 2008, vol. 113, A09212. DOI:https://doi.org/10.1029/2007JA013011.

31. Kubota Y., Omura Y. Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause. J. Geophys. Res. 2017, vol. 122, pp. 293-309. DOI:https://doi.org/10.1002/2016JA023267.

32. Kuznetsov S.N., Lazutin L.L., Panasyuk M.I., Starostin L.I., Gotseliuk Yu.V., Hasebe N., Sukurai K., Hareyama M. Solar particle dynamics during magnetic storms of July 23-27, 2009. Adv. Space Res. 2009, vol. 45, iss. 4, pp. 553-558. DOI: 10.1016/ j.asr.2008.09.014.

33. Kuznetsov S.N. The behavior of the outer radiation belt of the Earth according to satellites Electron-1 and Electron-2. Izvestiya RAN. Seriya Fizicheskaya [Bulletin of the Russian Academy of Sciences: Physics]. 1966, vol. 30, iss. 11, pp. 1829-1837. (In Russian).

34. Lazutin L.L. On radiation belt dynamics during magnetic storm. Adv. Space Res. 2012, vol. 49, no 2, pp. 302-315. DOI:https://doi.org/10.1016/j.asr.2011.09.015.

35. Lazutin L.L. Dawn-dusk asymmetry and adiabatic dynamic of the radiation belt electrons during magnetic storm. Adv. Space Res. 2016, vol. 58, iss. 6, pp. 897-902. DOI:https://doi.org/10.1016/j.asr. 2016.05.047.

36. Lazutin L.L. Depletion of the outer radiation belt during low activity years. Adv. Space Res. 2017, vol. 59, iss. 9, pp. 2248-2254. DOI:https://doi.org/10.1016/j.asr.2017.02.008.

37. Lazutin L.L., Panasyuk M.I., Hasebe N. Accelerations and losses of energetic protons and electrons during August 30-31, 2004 magnetic storm. Cosmic Res. 2011, vol. 49, no. 1, pp. 35-41.

38. Lazutin L.L., Logachev Yu.I., Muravieva E.A., Petrov V.L. Relaxation of electron and proton radiation belts of the Earth after strong magnetic storms. Kosmicheskie issledovaniya [Cosmic Reseach]. 2012, vol. 50, no. 1, pp. 3-14. (In Russian).

39. Lazutin L.L. Injection of relativistic electrons into the internal magnetosphere during magnetic storms: connection with substorms. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2013, vol. 53, no. 6, pp. 716-732. DOI:https://doi.org/10.7868/S00167940 13050118. (In Russian).

40. Lee D.-Y., Shin D.-K., Kim J.-H., Cho J.-H., Kim K.-C., Hwang, J.A., Turner D.L., Kim T.K., Park M.-Y. Long-term loss and reformation of the outer radiation belt. J. Geophys. Res.: Space Phys. 2013, vol. 118, pp. 3297-3313. DOI: 10.1002/ jgra.50357.

41. Li X., Roth I., Temerin M., Wygant J.R., Hudson M.K., Blake J.B. Simulations of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC. Geophys. Res. Lett. 1993, vol. 20, p. 2423.

42. Li X., Baker D.N., Temerin M., Cayton T.E., Reeves G.D., Christensen R.A., Blake J.B., Looper M.D., Nakamura R., Kanekal S.G. Multisatellite observations of the outer zone electron variation during the November 3-4, 1993, magnetic storm. J. Geophys. Res. 1997, vol. 102, iss. A7, pp. 14,123-14,140. DOI:https://doi.org/10.1029/97JA01101.

43. Li X., Temerin M., Baker D.N., Reeves G.D., Larson D. Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophys. Res. Lett. 2001, vol. 28, iss. 9, pp. 1887-1890. DOI:https://doi.org/10.1029/2000 GL012681.

44. Li X., Temerin M., Baker D.N., Reeves G.D. Behavior of MeV electrons at geosynchronous orbit during last two solar cycles. J. Geophys. Res. 2011, vol. 116, A11207. DOI:https://doi.org/10.1029/2011JA016934.

45. Logachev Yu.I., Lazutin L.L. On the belt of energetic electrons at L=2.75 in the Earth’s magnetosphere. Cosmic Res. 2012, vol. 50, no. 2, p. 116.

46. Matsumura C., Miyoshi Y., Seki K., Saito S., Angelopoulos V., Koller J. Outer radiation belt boundary location relative to the magnetopause: Implications for magnetopause shadowing. J. Geophys. Res. 2011, vol. 116, A06212. DOI:https://doi.org/10.1029/2011JA0 16575.

47. McIlwain C.E. Ring current effects on trapped particles. J. Geophys. Res. 1966, vol. 71, p. 3623.

48. Meredith N.P., Horne R.B., Glauert S.A., Anderson R.R. Slot region electron loss timescales due to plasmaspheric hiss and lightning generated whistlers. J. Geophys. Res. 2007, vol. 112, A08214. DOI:https://doi.org/10.1029/2007JA012413.

49. Millan R.M., Baker D.N. Acceleration of particles to high energies in Earth’s radiation belts. Space Sci. Rev. 2012, vol. 173, iss. 1-4, pp. 103-131. DOI:https://doi.org/10.1007/s11214-012-9941-x.

50. Millan R.M., Thorne R.M. Review of radiation belt relativistic electron losses. J. Atmos. Solar-Terr. Phys. 2007, vol. 69, pp. 362-377. DOI:https://doi.org/10.1016/j.jastp.2006.06.019.

51. Ni B., Xing Cao, Zhengyang Zou. Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales. J. Geophys. Res. 2015, vol. 120, iss. 9, pp. 7357-7373. DOI:https://doi.org/10.1002/2015JA021466.

52. Nishida A. Outward diffusion of energetic particles from the Jovian radiation belt. J. Geophys. Res. 1976, vol. 81, p. 1771.

53. Parks G.K., Winkler J.R. Acceleration of energetic electrons observed at the synchronous altitude during magnetospheric substorms. J. Geophys. Res. 1968, vol. 73, p. 5786.

54. Pavlov N.N., Tverskaya L.V., Tverskoy B.A., Chuchkov E.A. Radiation belt particle flux changes during strong magnetic storm of March 24, 1991. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1993, vol. 33, no. 6, pp. 41-45. (In Russian).

55. Potapov A.S. Outer radiation belt relativistic electrons and prediction methods (review). Solnechno-zemnaya fizika [Solar-Terr. Phys.]. 2017, vol. 3, iss. 1. pp. 46-58. DOI:https://doi.org/10.12737/22210. (In Russian).

56. Reeves G.D., Baker D.N., Belian R.D., Blake J.B., Cayton T.E., Fennell J.F., Friedel R.H.W., Meier M.M., Selesnick R.S., Spence H.E. The global response of relativistic radiation belt electrons to the January 1997 magnetic cloud. Geophys. Res. Lett. 1998, vol. 17, iss. 25, p. 3265. DOI:https://doi.org/10.1029/98GL02509.

57. Reeves G.D., McAdams K.L., Friedel R.H.W., O’Brien T.P. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 2003, vol. 30, iss. 10, p. 1529. DOI:https://doi.org/10.1029/2002GL016513.

58. Saito S., Miyoshi Y., Seki K. A split in the outer radiation belt by magnetopause shadowing: test particle simulations. J. Geophys. Res. 2010, vol. 115, A08210. DOI:https://doi.org/10.1029/2009JA 014738.

59. Shprits Y.Y., Thorne R.M., Friedel R., Reeves G.D., Fennell J., Baker D.N., Kanekal S.G. Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res. 2006, vol. 111, A11214. DOI:https://doi.org/10.1029/2006JA011657.

60. Shprits Y.Y., Elkington S., Meredith N.P., Subbotin D.A. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: radial transport. J. Atmos. Solar-Terr. Phys. 2008a, vol. 70, pp. 1679-1693. DOI:https://doi.org/10.1016/j.jastp.2008. 06.008.

61. Shprits Y.Y., Subbotin D.A., Meredith N.P., Elkington S. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: local acceleration and losses. J. Atmos. Solar-Terr. Phys. 2008b, vol. 70, pp. 1694-1713. DOI:https://doi.org/10.1016/j.jastp.2008.06.014.

62. Simms L.E., Engebretson M.J., Pilipenko V., Reeves G.D., Clilverd M. Empirical predictive models of daily relativistic electron flux at geostationary orbit: multiple regression analysis. J. Geophys. Res. 2016, vol. 121, pp. 3181-3197. DOI:https://doi.org/10.1002/2016 JA022414.

63. Slivka M., Kudela K., Kuznetsov S.N. Some aspects of relativistic electron fluxes dynamics in the outer radiation belt during magnetic storms. Acta Physica Slovaca. 2006. vol. 56, no. 2, pp. 103-107.

64. Summers D., Thorne R.M. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. 2003. vol. 108, iss. A4, p. 1143. DOI:https://doi.org/10.1029/2002JA009489.

65. Summers D., Ma C., Mukai T. Competition between acceleration and loss mechanisms of relativistic electrons during geomagnetic storms. J. Geophys. Res. 2004, vol. 109, A04221. DOI:https://doi.org/10.1029/2004JA010437.

66. Summers D., Thorne R.M., Xiao F. Relativistic theory of waveparticle resonant diffusion with application to electron acceleration in the magnetosphere. J. Geophys. Res. 1998, vol. 103, iss. A9, pp. 20487-20500. DOI:https://doi.org/10.1029/98JA01740.

67. Tang C.L., Zhang J.-C., Reeves G.D., Su Z.P., Baker D.N., Spence H.E., Funsten H.O., Blake J.B., Wygant J.R. Prompt enhancement of the Earth’s outer radiation belt due to substorm electron injections. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 11,826-11,838. DOI:https://doi.org/10.1002/2016JA023550.

68. Turner D.L., Shprits Y., Hartinger M., Angelopoulos V. Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat. Phys. 2012, vol. 8, pp. 208-212. DOI:https://doi.org/10.1038/nphys2185.

69. Turner D.L., O’Brien T.P., Fennell J.F S. Claudepierre G., Blake J.B., Jaynes A.N., Baker D.N., Kanekal S., Gkioulidou M., Henderson M.G., Reeves G.D. Investigating the source of near-relativistic and relativistic electrons in Earth’s inner radiation belt. J. Geophys. Res. 2017, vol. 122, pp. 695-710. DOI: 10.1002/ 2016JA023600.

70. Tverskaya L.V., Ivanova T.A., Pavlov N.N., Reizman S.Ya., Rubinstein I.A., Sosnovets E.N., Veden’kin N.N. Storm-time formation of a relativistic electron belt and some relevant phenomena in other magnetospheric plasma domains. Adv. Space Res. 2005, vol. 36, pp. 2392-2400. DOI: https://doi.org/10. 1016/ j.asr.2003.09.071.

71. Tverskoi B.A. Dynamics of the Earth’s radiation belts. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1964, vol. 4, pp. 436-448. (In Russian).

72. Tverskoi B.A. Transfer and acceleration of charged particles in the magnetosphere of the Earth. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1965, vol. 5, pp. 793-809. (In Russian).

73. Tverskoi B.A. Osnovy teoreticheskoi kosmofiziki [Foundations of Theoretical Space Physics]. Moscow, URSS Publ., 2004. 376 p.

74. Ukhorskiy A.Y., Anderson B.J., Takahashi K., Tsyganenko N.A. The impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons. Geophys. Res. Lett. 2006, vol. 33, iss. 6, L06111. DOI:https://doi.org/10.1029/2005GL 024380.

75. Ukhorskiy A.Y., Sitnov M.I., Millan R.M., Kress B.T., Fennell J.F., Claudepierre S.G., Barnes R.J. Global storm time depletion of the outer electron belt. J. Geophys. Res. 2015, vol. 120, iss. 4, pp. 2543-2556. DOI:https://doi.org/10.1002/2014JA020645.

76. Vampola A.L., Korth A. Electron drift echoes in the inner magnetosphere. J. Geophys. Res. 1992, vol. 19, iss. 6, pp. 625-628. DOI:https://doi.org/10.1029/92GL00121.

77. Vernov S.N., Gorchakov E.V., Kuznetsov S.N., Logachev Yu.I., Sosnovets E.N., Stolpovs V.G. Particle fluxes in the outer geomagnetic field. Rev. Geophys. 1969, vol. 7, no. 12, pp. 257-280.

78. Vernov S.N., Chudakov A.E., Vakulov P.V., Gorchakov Ye.V., Kuznetsov S.N., Logachev Yu.I., Nikolaev A.G., Rubinshtein I.A., Sosnovets E.N., Stolpovsky V.G., El’tekov V.A. Results of the investigation of radiation belt particle position and energy based on satellite Electron-1 and Electron-2 measurements. Space Investigations. Moscow, Nauka Publ., 1965, pp. 394-405. (In Russian).

79. Xiao F., Chang Yang, Zhaoguo He, Zhenpeng Su, Qinghua Zhou, Yihua He, Kletzing C.A., Kurth W.S., Hospodarsky G.B., Spence H.E., Reeves G.D., Funsten H.O., Blake J.B., Bake D.N., Wygant J.R. Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm. J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 3325-3332. DOI: 10.1002/ 2014JA019822.

80. Yang X.C., Zhu G.W., Zhang X.X., Sun Y.Q., Liang J.B., Wei X.H. An unusual long-lived relativistic electron enhancement event excited by sequential CMEs. J. Geophys. Res.: Space Phys. 2014, vol. 119, p. 119. DOI:https://doi.org/10.1002/2014JA 019797.

81. Ying Xiong, Lun Xie, Zuyin Pu, Suiyan Fu, Lunjin Chen, Binbin Ni, Wen Li, Jinxing Li, Ruilong Guo, Parks G.K. Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms. J. Geophys. Res. 2015, vol. 120, iss. 11, pp. 9513-9523. DOI:https://doi.org/10.1002/2015JA021440.

82. Yu J., Li L.Y., Cao J.B., Yuan Z.G., Reeves G.D., Baker D.N., Blake J.B., Spence H. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 10,275-10,288. DOI: 10.1002/ 2015JA021460.

83. Zakharov A.V., Kuznetsov S.N. Electron precipitation and VLF emission. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1978, vol. 18, no. 2, pp. 352-353.

84. Zhenpeng Su, Hui Zhu, Fuliang Xiao, Huinan Zheng, Yuming Wang, Q.-G. Zong, Zhaoguo He, Chao Shen, Min Zhang, Shui Wang, Kletzing C.A., Kurth W.S., Hospodarsky G.B., Spence H.E., Reeves G.D., Funsten H.O., Blake J.B., Baker D.N. Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt. J. Geophys. Res. 2014, vol. 119, iss. 12, pp. 10,023-10,040. DOI:https://doi.org/10.1002/2014JA020709.

Login or Create
* Forgot password?