Geophysical Center of the Russian Academy of Sciences
Irkutsk, Russian Federation
Irkutsk, Russian Federation
As shown within the gyrokinetic framework, drift-compressional waves can propagate in the magnetosphere in the direction of energetic electron drift. The plasma is assumed to be composed of cold particles with an admixture of hot protons with a Maxwell distribution and electrons with an inverted distribution. The conditions of existence of such waves and their intensification due to resonance interaction with energetic electrons (drift instability) have been de termined. The results can be helpful in interpreting observation of wave phenomena in the magnetosphere with frequencies in the range of geomagnetic pulsations Pc5 and below.
magnetosphere, ULF waves, wave—particle interaction
1. Allan W., Poulter E.M., Nielsen E. STARE observations of a Pc5 pulsation with large azimuthal wave number. J. Geophys. Res. 1982, vol. 87, pp. 6163-6172. DOI:https://doi.org/10.1029/JA087iA08 p06163.
2. Barfield J.N., McPherron R.L. Statistical characteristics of storm-associated Pc5 micropulsations observed at the synchronous equatorial orbit. J. Geophys. Res. 1972, vol. 77, pp. 4720-4733. DOI:https://doi.org/10.1029/JA077i025p04720.
3. Chelpanov M.A., Mager P.N., Klimushkin D.Y., Berngardt O.L., Mager O.V. Experimental evidence of drift compressional waves in the magnetosphere: an Ekaterinburg coherent decameter radar case study. J. Geophys. Res. Space Phys. 2016, vol. 121, pp. 1315-1326. DOI:https://doi.org/10.1002/2015JA022155.
4. Chen L., Hasegawa A.A theory of long period magnetic pulsation. 1. Steady state excitation of a field line resonance J. Geophys. Res. 1974, vol. 79, pp. 1024-1032. DOI:https://doi.org/10.1029/JA079i 007p01024.
5. Chen L., Hasegawa A. Kinetic theory of geomagnetic pulsations. 1. Internal excitations by energetic particles. J. Geophys. Res. 1991, vol. 96, pp. 1503-1512. DOI: 10.1029/ 90JA02346.
6. Crabtree C., Horton W., Wong H.V., van Dam J.W. Bounce-averaged stability of compressional modes in geotail flux tubes. J. Geophys. Res. 2003, vol. 108, p. 1084. DOI: 10.1029/ 2002JA009555.
7. Fenrich F.R., Samson J.C., Sofko G., Greenwald R.A. ULF high- and low-m field line resonances observed with the Super Dual Auroral Radar Network. J. Geophys. Res. 1995, vol. 100, pp. 21,535-21,548. DOI:https://doi.org/10.1029/95JA02024.
8. Hamlin D.A., Karplus R., Vik R.C., Watson K.M. Mirror and azimuthal drift frequencies for geomagnetically trapped particles. J. Geophys. Res. 1961, vol. 66, no. 1, pp. 1-4. DOI: 10.1029/ JZ066i001p00001.
9. Higuchi T., Kokubun S. Waveform and polarization of compressional Pc5 waves at geosynchronous orbit. J. Geophys. Res. 1988, vol. 93, pp. 14,433-14,443. DOI: 10.1029/ JA093iA12p14433.
10. Hughes W.J., Southwood D.J., Mauk B., McPherron R.L., Barfield J.N. Alfvén waves generated by an inverted plasma energy distribution., Nature. 1978, vol. 275, pp. 43-45. DOI: 10.1038/ 275043a0.
11. Hurricane O.A., Pellat R., Coroniti F.V. The kinetic response of a stochastic plasma to low frequency perturbations. J. Geophys. Res. 1994, vol. 21, no. 4, pp. 253-256. DOI:https://doi.org/10.1029/93 GL03533.
12. James M.K., Yeoman T.K., Mager P.N., Klimushkin D.Y. The spatio-temporal characteristics of ULF waves driven by substorm injected particles. J. Geophys. Res. Space Phys. 2013, vol. 118, pp. 1737-1749. DOI:https://doi.org/10.1002/jgra.50131.
13. Klimushkin D.Y., Mager P.N. Spatial structure and stability of coupled Alfvén and drift compressional modes in non-uniform magnetosphere: gyrokinetic treatment. Planet. Space Sci. 2011, vol. 59, pp. 1613-1620. DOI:https://doi.org/10.1016/j.pss.2011.07.010.
14. Klimushkin D.Y., Mager P.N., Pilipenko V.A. On the ballooning instability of the coupled Alfvén and drift compressional modes. Earth, Planets and Space. 2012, vol. 64, pp. 777-781. DOI:https://doi.org/10.5047/eps.2012.04.002.
15. Kremser G., Korth A., Fejer J.A., Wilken B., Gurevich A.V., Amata E. Observations of quasi-periodic flux variations of energetic ions and electrons associated with Pc5 geomagnetic pulsations. J. Geophys. Res. 1981, vol. 86, pp. 3345-3356. DOI:https://doi.org/10.1029/JA086iA05p03345.
16. Leonovich A.S., Mazur V.A. Resonance excitation of standing Alfvén waves in an axisymmetric magnetosphere (Monochromatic oscillations). Planet. Space Sci. 1989, vol. 37, pp. 1095-1108.
17. Leonovich A.S., Mazur V.A. A theory of transverse small-scale standing Alfvén waves in an axially symmetric magnetosphere. Planet. Space Sci. 1993, vol. 41, pp. 697-717. DOI:https://doi.org/10.1016/0032-0633(93)90055-7.
18. Mager P.N., Berngardt O.I., Klimushkin D.Y., Zolotukhina N.A., Mager O.V. First results of the high-resolution multibeam ULF wave experiment at the Ekaterinburg SuperDARN radar: ionospheric signatures of coupled poloidal Alfvén and drift-compressional modes. J. Atmos. Solar-Terr. Phys. 2015, vol. 130-131, pp. 112-126. DOI:https://doi.org/10.1016/j.jastp.2015.05.017.
19. Mager P.N., Klimushkin D.Y., Kostarev D.V. Drift-compressional modes generated by inverted plasma distributions in the magnetosphere. J. Geophys. Res. Space Phys. 2013, vol. 118, pp. 4915-4923. DOI:https://doi.org/10.1002/jgra.50471.
20. Pokhotelov O.A., Onishchenko O.G., Balikhin M.A., Treumann R.A., Pavlenko V. P. Drift mirror instability in space plasmas. 2. Nonzero electron temperature effects. J. Geophys. Res. 2001, vol. 106, pp. 13,237-13,246.
21. Southwood D.J. Some features of field line resonances in the magnetosphere. Planet. Space Sci. 1974, vol. 22, pp. 483-491. DOI:https://doi.org/10.1016/0032-0633(74)90078-6.
22. Walker A.D.M. Magnetohydrodynamic Waves in Geospace. The Theory of ULF Waves and Their Interaction with Energetic Particles in the Solar-Terrestrial Environment. 2005, pp. 503-506.
23. Yeoman T.K., Tian M., Lester M., Jones T.B. A study of Pc5 hydromagnetic waves with equatorward phase propagation. Planet. Space Sci. 1992, vol. 40, pp. 797-810. DOI: 10.1016/ 0032-0633(92)90108-Z.