REGISTERING UPPER ATMOSPHERE PARAMETERS IN EAST SIBERIA WITH FABRY–PEROT INTERFEROMETER KEO SCIENTIFIC “ARINAE”
Abstract and keywords
Abstract (English):
We describe the Fabry–Perot interferometer designed to study Earth’s upper atmosphere. We propose a modification of the existing data processing method for determining the Doppler shift and Doppler widening and also for separating the observed line intensity and the background intensity. The temperature and wind velocity derived from these parameters are compared with physical characteristics obtained from modeling (NRLMSISE-00, HWM14). We demonstrate that the temperature is determined from the oxygen 630 nm line irrespective of the hydroxyl signal existing in interference patterns. We show that the interferometer can obtain temperature from the oxygen 557.7 nm line in case of additional calibration of the device. The observed wind velocity mainly agrees with model data. Night variations in the red and green oxygen lines quite well coincide with those in intensities obtained by de-vices installed nearby the interferometer.

Keywords:
Fabry–Perot interferometry, Earth’s atmosphere airglow, upper atmosphere wind, upper atmosphere temperature
Text
Publication text (PDF): Read Download
References

1. Akasofu S.I., Chepmen S. Solar-Terrestrial Physics. Part 1. Moscow, Mir Publ., 1974. 384 p. (In Russian).

2. Anderson C., Conde M., Dyson P., Davies T., Kosch M.J. Thermospheric winds and temperatures above Mawson, Antarctica observed with an all-sky imaging Fabry-Perot spectrometer. Ann. Geophys. 2009, vol. 27, pp. 2225-2235. DOI:https://doi.org/10.5194/angeo-27-2225-2009.

3. Born M., Wolf E. Osnovy optiki [Principles of Optics. 2nd Ed.]. Moscow: Nauka Publ., 1973, pp. 297-313. (In Russian).

4. Coelho L.P. Mahotas. Open source software for scriptable computer vision. J. Open Res. Software. 2013, 1:e3. DOI: http://dx.doi.org/10.5334/jors.ac

5. Drob D.P., Emmert J.T., Meriwether J.W., Makela J.J, Doornbos E.N, Conde M., Hernandez G., Noto J., Zawdie K.A., McDonald S.E., Huba J.D., Klenzing J.H. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth and Space Sci. 2015, vol. 2, pp. 301-319. DOI:https://doi.org/10.1002/2014EA000089.

6. Fisher D.J., Makela J.J., Meriwether J.W., Fisher D.J., Makela J.J., Meriwether J.W., Buriti R.A., Benkhaldoun Z., Kaab M., Lagheryeb A. Climatologies of nighttime thermospheric winds and temperatures from Fabry-Perot interferometer measurements: From solar minimum to solar maximum. J. Geophys. Res. Space Phys. 2015, vol. 120, pp. 6679-6693. DOI:https://doi.org/10.1002/2015JA021170.

7. Fishkova L.M. Nochnoe izluchenie sredneshirotnoi verkhnei atmosfery Zemli [Night Emission of the Earth’s Mid-Latitude Upper Atmosphere]. Tbilisi: Metsniereba Publ., 1983, 272 p. (In Russian).

8. Harding B.J., Gehrels T.W., Makela J.J. Nonlinear regression method for estimating neutral wind and temperature from Fabry-Perot interferometer data. App. Optics. 2014, vol. 53, pp. 666-673. DOI:https://doi.org/10.1364/AO.53.000666.

9. Hernandez G. Contamination of the O I (³P 2-¹D 2) emission line by the (9-3) band of OH X²II in high-resolution measurements of the night sky. J. Geophys. Res. 1974, vol. 79, no. 7, pp. 1119-1123. DOI:https://doi.org/10.1029/JA079i007p01119.

10. Ignatyev V.M., Yugov V.A. Interferometriya krupnomasshtabnoi dinamiki vysokoshirotnoi termosfery [Interferometry of Large-Scale Dynamics of High-Latitude Thermosphere]. Yakutsk Scientific Center. Yakutsk, 1995, 208 p. (In Russian).

11. Ignatyev V.M., Nikolashkin S.V., Yugov V.A., Asksen-tyev A.G., Ammosov P.P. Fabry-Perot high-transmission spectrometer. Pribory i tekhnika eksperimenta [Instruments and Experimental Techniques]. 1998, no. 4, pp. 107-110. (In Russian).

12. Kononov R.A., Tashchilin A.V. Effect of seasonal and cyclic variations of thermosphere parameters on night intensity of atomic oxygen red line. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2001, vol. 14, no. 10. pp. 979-982.

13. Krassovsky V.I., Semenov A.I., Shefov N.N. Predawn emission at 6300 Å and super-thermal ions from conjugate points. J. Atm. Terr. Phys. 1976, vol. 38, no. 9-10, pp. 999-1001.

14. Landau L.D., Lifshits E.M. Teoriya polya [Theory of Fields. 7th Ed.]. Moscow: Nauka Publ., 1988, pp. 158-159. (In Russian).

15. Makela J.J., Meriwether J.W., Huang Y., Sherwood P.J. Simulation and analysis of a multi-order imaging Fabry-Perot interferometer for the study of thermospheric winds and temperatures. Appl. Optics. 2011, vol. 50, pp. 4403-4416. DOI: 10.1364/ AO.50.004403.

16. Marquardt D.W. An Algorithm for least-squares estimation of nonlinear parameters. J. Soc. Industrial and Applied Mathematics. 1963, vol. 11, no. 2, pp. 431-441. DOI: 10.1137/ 0111030.

17. Medvedeva I.V., Semenov A.I., Perminov V.I., Tatarnikov A.V., Beletsky A.B. Comparative analysis between data of ground-based measurements of mesopause temperature at midlatitudes and satellite data MLS Aura, v3.3. Sovremennye problem distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space]. 2012, vol. 9, no. 4, pp. 133-139. (In Russian).

18. Nakamura Y., Shiokawa K., Otsuka Y., Oyama S., Nozawa S., Komolmis T., Komonjida S., Neudegg D., Yuile C., Meriwether J., Shinagawa H., Jin H. Measurement of thermospheric temperatures using OMTI Fabry-Perot interferometers with 70-mm etalon. Earth, Planets and Space. 2017, vol. 69, iss. 1, article id.57. DOI: 10.1186/ s40623-017-0643-1.

19. Newville M., Stensitzki T., Allen D.B., Ingargiola A. LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python [Data set]. Zenodo, 2014. URL: http://doi.org/https://doi.org/10.5281/zenodo.11813 (accessed Yuly 14, 2017).

20. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, vol. 107, no. A12, p. 1468. DOI:https://doi.org/10.1029/2002JA009430.

21. Semenov A.I. Predawn temperature and intensity variations of 6300 Å emission. Astronomicheskii tsirkulyar [Astronomical Circular]. 1975, no. 882, pp. 6-7. (In Russian).

22. Shefov N.N., Semenov A.I., Khomich V.Yu. Izluchenie verkhnei atmosfery - indicator ee struktury I dinamiki [Upper Atmosphere Emission as Indicator of Its Structure and Dynamics]. Moscow: Geos, 2006, 741 p. (In Russian).

23. Shefov N.N., Semenov A.I., Yurchenko O.T., Sushkov A.V. Empirical model of variations of 630.0 nm atomic oxygen emission. 2. Temperature. Geomagnetizm i aeronomiya [Geomagnetiosm and Aeronomy]. 2007, vol. 47, no. 5, pp. 692-701. (In Russian).

24. Shiokawa K., Otsuka Y., Oyama S. Development of low-cost sky-scanning Fabry-Perot interferometers for airglow and auroral studies. Earth, Planets and Space. 2012, vol. 64, p. 1033. DOI:https://doi.org/10.5047/eps.2012.05.004.

25. Toroshelidze T.I. Analiz problem aeronomii po izlucheniyu verkhnei atmosfery [Analysis of Aeronomy Problems from Upper Atmosphere Emission]. Tbilisi: Metsniereba Publ., 1991, 216 p. (In Russian).

26. van Rossum G. Python Tutorial, Technical Report CS-R9526. Centrum voor Wiskunde en Informatica (CWI). Amsterdam, May 1995.

27. Wu Q., Gablehouse R.D., Solomon S.C., Killeen T.L., Chiao-Yao She. A new NCAR Fabry-Perot interferometer for upper atmospheric research. Proc. SPIE, 2004, vol. 5660, pp. 218-227.

28. URL: http://atmos.iszf.irk.ru/ru/ground-based/spectr (accessed Yuly 14, 2017).

29. URL: http://atmos.iszf.irk.ru/ru/ground-based/keo (accessed Yuly 14, 2017).

Login or Create
* Forgot password?