OBSERVING WAVE PACKETS GENERATED BY SOLAR TERMINATOR IN TEC DURING TYPHOONS
Abstract and keywords
Abstract (English):
In this work, we study ionospheric disturbances excited by the passage of the solar terminator (ST) during tropical cyclones, using total electron content (TEC) data. We have considered 16 intense tropical cyclones (typhoons) that acted in the northwest of the Pacific Ocean near the territory of Japan. We analyze two-dimensional distributions of the number of registered wave packets (WPs) depending on various parameters: local time, WP maximum amplitude, and distance to typhoon. It is shown that in most cases the maximum number of WPs is observed at a distance less than 500–1500 km from the typhoon center and near the time of evening solar terminator passage. For typhoons occurring during autumn periods, the maximum number of WPs is recorded at daytime, and, apparently, is not associated with ST. Distributions of the number of WPs depending on their amplitude have a similar form for all the cases considered, with a maximum of about 0.2 TECU. At the same time, for some typhoons there are a large number of WPs with amplitude up to 0.6–0.8 TECU, which is significantly higher than WP amplitudes under quiet conditions. We briefly discuss the mechanism of possible interaction between ionospheric disturbances caused by two different sources (tropical cyclones and ST passage).

Keywords:
wave packets, TEC, typhoon, solar terminator, ionospheric disturbances, GNSS
Text
Text (PDF): Read Download
References

1. Afraimovich E.L., Edemskiy I.K., Leonovich A.S., Leonovich L.A., Voeykov S.V., Yasyukevich Y.V. MHD nature of night-time MSTIDs excited by the solar terminator. Geophys. Res. Let. 2009a, vol. 36, L15106. DOI:https://doi.org/10.1029/2009GL039803.

2. Afraimovich E.L., Edemskiy I.K., Voeykov S.V., Yasyu-kevich Yu.V., Zhivetiev I.V. Spatio-temporal structure of the wave packets generated by the solar terminator. Adv. Space Res. 2009b, vol. 44, pp. 824-835. DOI:https://doi.org/10.1016/j.asr.2009.05.017.

3. Afraimovich E.L., Perevalova N.P., Voyeikov S.V. Traveling wave packets of total electron content disturbances as deduced from global GPS network data. J. Atmosph. Solar-Terr. Phys. 2003. vol. 65, iss. 11-13, pp. 1245-1262. DOI:https://doi.org/10.1016/j.jastp.2003.08.007.

4. Belyaev G., Boychev B., Kostin V., Trushkina E., Ovcharenko O. Modification of the ionosphere near the terminator due to the passage of a strong tropical cyclone through the large Island. Sun and Geosphere. 2015, vol. 10, pp. 31-38.

5. Bertin F., Testud J., Kersley L. Medium scale gravity waves in the ionospheric F-region and their possible origin in weather disturbances. Planet. Space Sci. 1975, vol. 23, pp. 493-507. DOI:https://doi.org/10.1016/0032-0633(75)90120-8.

6. Bishop R.L., Aponte N., Earle G.D., Sulzer M., Larsen M.F., Peng G.S. Arecibo observations of ionospheric perturbations associated with the passage of Tropical Storm Odette. J. Geophys. Res. 2006, vol. 111, pp. A11320. DOI:https://doi.org/10.1029/2006JA011668.

7. Chane-Ming F., Roff G., Robert L., Leveau J. Gravity wave characteristics over Tromelin Island during the passage of cyclone Hudah. Geophys. Res. Let. 2002, vol. 29, no. 6. CiteID 1094. DOI:https://doi.org/10.1029/2001GL013286.

8. Chou M.Y., Lin C. H., Yue J., Chang L. C., Tsai H.F., Chen C.H. Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys. Res. Let. 2017a, vol. 44, pp. 7569-7577. DOI:https://doi.org/10.1002/2017GL073961.

9. Chou M.Y., Lin C.C.H., Yue J., Tsai H.F., Sun Y.Y., Liu J.Y., Chen C.H. Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016). Geophys. Res. Let. 2017b, vol. 44, pp. 1219-1226. DOI:https://doi.org/10.1002/2016GL072205.

10. Edemskiy I.K., Voyeykov S.V., Yasyukevich Yu.V. Seasonal and latitudinal variations of parameters of wavelike MHD-based disturbances generated by solar terminator. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space]. 2011, vol. 8, no. 4, pp. 107-116. (In Russian).

11. Edemskiy I.K., Yasyukevich Y.V. Duration of wave disturbances generated by solar terminator in magneto-conjugate areas. Proc. XXXth URSI General Assembly and Scientific Symposium. Istanbul, 2011, pp. 1-4. DOI:https://doi.org/10.1109/URSIGASS.2011.6051003.

12. Forbes J.M., Palo S.E., Zhang X. Variability of the ionosphere. J. Atm. Solar-Terr. Phys. 2000, vol. 62, pp. 685-693. DOI:https://doi.org/10.1016/S1364-6826(00)00029-8.

13. Francis S. H. A theory of medium-scale traveling ionospheric disturbances. J. Geophys. Res. 1974, vol. 79, no. 34. pp. 5245-5260. DOI:https://doi.org/10.1029/JA079i034p05245.

14. Galushko V.G., Paznukhov V.V., Yampolski Y.M., Foster J.C. Incoherent scatter radar observations of AGW/TID events generated by the moving solar terminator. Ann. Geophys. 1998, vol. 16, pp. 821-827. DOI:https://doi.org/10.1007/s00585-998-0821-3.

15. Hines C.O. Internal atmospheric gravity waves at ionospheric heights. Canadian J. Phys. 1960, vol. 38, no. 11, pp. 1441-1481. DOI:https://doi.org/10.1139/p60-150.

16. Huang Y.N., Cheng K., Chen S.W. On the detection of acoustic gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system. Radio Sci. 1985, vol. 20, pp. 897-906. DOI:https://doi.org/10.1029/RS020i004p00897.

17. Kazimirovsky E.S. Coupling from below as a source of ionospheric variability: a review. Ann. Geophys. 2002, vol. 45, no. 1, pp. 1-29. DOI:https://doi.org/10.4401/ag-3482.

18. Kim S.-Y., Chun H.-Y., Baik J.-J. A numerical study of gravity waves induced by convection associated with Typhoon Rusa. Geophys. Res. Let. 2005, vol. 32, pp. L24816. DOI:https://doi.org/10.1029/2005GL024662.

19. Klobuchar J.A. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerospace and Electronics System. 1986, vol. 23, no. 3, pp. 325-331.

20. Kuester M.A., Alexander M.J., Ray E.A. A Model Study of Gravity Waves over Hurricane Humberto (2001). J. Atmosph. Sci. 2008. vol. 65, no. 10, pp. 3231-3246. DOI:https://doi.org/10.1175/2008JAS2372.1.

21. Lastovicka J. Forcing of the ionosphere by waves from below. J. Atmos. Solar-Terr. Phys. 2006. vol. 68. pp. 479-497. DOI:https://doi.org/10.1016/j.jastp.2005.01.018.

22. Leonovich A.S., Kozlov D.A., Edemskiy I.K. Standing slow magnetosonic waves in a dipole-like plasmasphere. Planetary and Space Sci. 2010, vol. 58, no. 11, pp. 1425-1433. DOI:https://doi.org/10.1016/j.pss.2010.06.007.

23. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., Oinats A.V., Alsatkin S.S., Zherebtsov G.A. Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 7567-7580. DOI:https://doi.org/10.1002/2017JA024103.

24. Mishin E.V., Epishova A.E., Ishkova L.M., Kovalevskaya E.M., Kozlov E.F., Kolokolov L.E., Rubtsov L.N., Samorokin N.I., Sidorova L.N., Somsikov V.M., Telegin V.A., Yudovich L.A. Disturbances of F-region electron density following solar terminator during the WITS period of 16-20 March 1988. J. Atmosph. Terr. Phys. 1991, vol. 53, iss. 6-7, pp. 643-648. DOI:https://doi.org/10.1016/0021-9169(91)90091-K.

25. Pfister L., Chan K.R., Bui T.P., Bowen S., Legg M., Gary B., Kelly K., Proffitt M., Starr W. Gravity waves generated by a tropical cyclone during the STEP tropical field program: A case study. J. Geophys. Res. 1993, vol. 98, no. D5, pp. 8611-8638. DOI:https://doi.org/10.1029/92JD01679.

26. Polyakova A.S., Perevalova N.P. Investigation into impact of tropical cyclones on the ionosphere using GPS sounding and NCEP/NCAR Reanalysis data. Adv. Space Res. 2011, vol. 48, pp. 1196-1210. DOI:https://doi.org/10.1016/j.asr.2011.06.014.

27. Polyakova A.S., Perevalova N.P. Comparative Analysis of TEC Disturbances over Tropical Cyclone Zones in the North-West Pacific Ocean. Adv. Space Res. 2013, vol. 52, pp. 1416-1426. DOI:https://doi.org/10.1016/j.asr.2011.06.014.

28. Polyakova A.S., Yasyukevich Yu.V. Change in the intensity of ionospheric response to solar terminator passage during tropical cyclones. Proc. XXV National Conference “Radiowaves propagation” dedicated to 80 Anniversary of Domestic Investigations of Ionosphere. 2016, Tomsk, 3-9 July. 2016, vol. 1, pp. 113-166. (In Russian).

29. Somsikov V.M., Ganguly B. On the formation of atmospheric! inhomogeneities in the solar terminator region. J. Atmos. Terr. Phys. 1995, vol. 57, iss. 12, pp. 1513-1523. DOI:https://doi.org/10.1016/0021-9169(95)00014-S.

30. Xiao Z., Xiao S., Hao Y., Zhang D. Morphological features of ionospheric response to typhoon. J. Geophys. Res. 2007, vol. 112, pp. A04304. DOI:https://doi.org/10.1029/2006JA011671.

31. Zakharov V.I., Kunitsyn V.E. Regional features of atmospheric manifestations of tropical cyclones according to ground-based GPS network data. Geomagnetism and Aeronomy. 2012, vol. 52, no. 4, pp. 533-545. DOI:https://doi.org/10.1134/S0016793212040160.

32. Yasyukevich Yu.V., Perevalova N.P., Edemskiy I.K., Polyakova A.S. Otklik ionosfery na gelio- i geofizicheskie vozmushchayushchie factory po dannym GPS [Ionosphere response to helio- and geophysical disturbing factors from GPS data]. Irkutks: Irkutsk State University Publ., 2013, 271 p. (In Russian).

33. Yasyukevich A.S., Padokhin A.M., Mylnikova A.A., Yasyukevich Yu.V., Voyeikov S.V., Tereshin N.A. Changes in the intensity of TEC variations with different time scales during tropical cyclones. Uchenye zapiski fizicheskogo fakul’teta MGU [Memoirs of the Faculty of Physics, Lomonosov Moscow State University], 2018, no. 1. (In Russian).

34. http://rammb.cira.colostate.edu

35. http://terras.gsi.go.jp

Login or Create
* Forgot password?