Moscow, Russian Federation
Troick, Russian Federation
Troick, Russian Federation
Moskva, Russian Federation
Moskva, Russian Federation
Moskva, Russian Federation
UDK 53 Физика
A comparison has been made between recurrent (associated with high-speed streams from coronal holes) and sporadic (caused by interplanetary coronal mass ejections (ICMEs)) Forbush decreases (FDs) in solar cycles 23 and 24 (as well as in the maxima of these cycles and the minimum between them). Forbush Effects and Interplanetary Disturbances database created and maintained in IZMIRAN provided a large number of events (about 1700 isolated FDs, among them 350 recurrent FDs, and 207 sporadic FDs selected with high reliability), which allowed us to apply statistical methods. The results revealed that sporadic FDs prevailed in the maxima of the cycles; recurrent FDs, in the minimum between the cycles. FD parameters (magnitude, decrease rate, anisotropy) are larger for sporadic events than for recurrent ones, especially in the maxima of the cycles. FD magnitude is greater in the maxima than in the minimum for sporadic events, and it changes weakly for recurrent ones. The solar wind velocity is on average greater for recurrent events than for sporadic ones; it is larger for recurrent FDs in the minimum and for sporadic FDs in the maxima. The magnetic field is stronger for sporadic FDs than for recurrent ones in the maxima and it is approximately equal for both types of events in the minimum. The magnetic field of ICMEs is weaker in the current solar cycle than in the previous one. The duration of the FD main phase is less in the maxima for both types of events; sporadic FDs developed significantly faster than recurrent ones in the maximum of cycle 23.
Forbush decrease, solar wind, interplanetary magnetic field, coronal mass ejections, coronal holes, solar cycle, statistical analysis
1. Abunin A.A., Abunina M.A., Belov A.V., Eroshenko E.A., Oleneva V.A., Yanke V.G. Forbush effects with a sudden and gradual onset. Geomagnetism and Aeronomy. 2012, vol. 52, no. 3, pp. 292-299. DOI:https://doi.org/10.1134/S0016793212039924.
2. Badruddin K.A. Study of the cosmic-ray modulation during the passage of ICMEs and CIRs. Solar Phys. 2016, vol. 291, no. 2, pp. 559-580. DOI:https://doi.org/10.1007/s11207-015-0843-4.
3. Belov A.V. Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. Proc. IAU Symposium. 2009, no. 257, pp. 119-130.
4. Belov A.V., Buetikofer R., Eroshenko E.A., Flueckiger E.O., Gushchina R.T., Oleneva V.A., Yanke V.G. Frequency of Forbush effects as an index of solar activity. Proc. 29th ICRC. 2005. V. 1, P. 375-378.
5. Belov A., Abunin A., Abunina M., Eroshenko E., Oleneva V., Yanke V., Papaioannou A., Mavromichalaki H., Gopalswamy N., Yashiro S. Coronal mass ejections and non-recurrent Forbush decreases. Solar Phys. 2014, vol. 289, no. 10, pp. 3949-3960. DOI:https://doi.org/10.1007/s11207-014-0534-6.
6. Belov A.V., Eroshenko E.A., Yanke V.G., Oleneva V.A., Abunina M.A., Abunin A.A. Global Survey Method for the world network of neutron monitors. Geomagnetism and Aeronomy. 2018, vol. 58, no. 3. pp. 356-372. DOI:https://doi.org/10.1134/S001 6793218030039.
7. Belov A.V., Eroshenko E.A., Yanke V.G., Oleneva V.A., Abunina M.A., Abunin A.A., Papaioannou A., Mavromichalaki H. The Global Survey Method applied to ground-level cosmic ray measurements. Solar Phys. 2018, vol. 293, no. 68. DOI:https://doi.org/10.1007/s11207-018-1277-6.
8. Bhaskar A., Subramanian P., Vichare G. Relative contribution of the magnetic field barrier and solar wind speed in ICME-associated Forbush decreases. Astrophys. J. 2016, vol. 828, no. 2, article id. 104, 8 p. DOI:https://doi.org/10.3847/0004-637X/828/2/104.
9. Cane H.V. CMEs and Forbush decreases. Space Sci. Rev. 2000, vol. 93, no. 1-2, pp. 55-77.
10. Chertok I.M., Abunin A.A., Belov A.V., Grechnev V.V. Dependence of Forbush-decrease characteristics on parameters of solar eruptions. J. Phys. Conf. Ser. 2013, vol. 409, no. 1, article id. 012150. DOI:https://doi.org/10.1088/1742-6596/409/1/012150.
11. Corder G.W., Foreman D.I. Nonparametric Statistics for Non-Statisticians. New Jersey, John Willey & Sons, 2009, 264 p.
12. Dorman L.I. Variatsii kosmicheskikh luchei i issledovanie kosmosa [Cosmic Ray Variation and Space Research]. Moscow, 1963. 1027 p. (In Russian). English edition: Dorman L.I. Cosmic Rays: Variations and Space Explorations. Amsterdam, North-Holland; New York, American Elsevier, 1974, 675 p.
13. Dumbović M., Vršnak B., Čalogović J., Župan R. Cosmic ray modulation by different types of solar wind disturbances. Astron. Astrophys. 2012, vol. 538, A28. DOI:https://doi.org/10.1051/0004-6361/201117710.
14. Dumbović M., Vršnak B., Čalogović J. Forbush decrease prediction based on remote solar observations. Solar Phys. 2016, vol. 291, no. 1, pp. 285-302. DOI:https://doi.org/10.1134/s11207-015-0819-4.
15. Forbush S.E. On the effects in the cosmic-ray intensity observed during magnetic storms. Phys. Rev. 1937, vol. 51, pp. 1108-1109.
16. Gopalswamy N. Coronal mass ejections: a summary of recent results. Proc. 20th National Solar Physics Meeting, Papradno, Slovakia. 2010, pp. 108-130.
17. Gopalswamy N., Akiyama S., Yashiro S., Xie H., Mäkelä P., Michalek G. The mild space weather in solar cycle 24. ArXiv. URL: https://arxiv.org/abs/1508.01603 (accessed November 9, 2018).
18. Iucci N., Parisi M., Storini M., Villoresi G. Forbush decreases: origin and development in the interplanetary space. Nuovo Cimento C. 1979, vol. 2C, pp. 1-52. DOI:https://doi.org/10.1007/BF02507712.
19. Kryakunova O., Tsepakina I., Nikolaevskiy N., Malimbaev A., Belov A., Abunin A., Abunina M., Eroshenko E., Oleneva V., Yanke V. Influence of high-speed streams from coronal holes on cosmic ray intensity in 2007. J. Phys. Conf. Ser. 2013, vol. 409, no. 1, article id. 012181. DOI:https://doi.org/10.1088/1742-6596/409/1/012181.
20. Lingri D., Mavromichalaki H., Belov A., Eroshenko E., Yanke V., Abunin A., Abunina M. Solar activity parameters and associated Forbush decreases during the minimum between cycles 23 and 24 and the ascending phase of cycle 24. Solar Phys. 2016, vol. 291, no. 3, pp. 1025-1041. DOI:https://doi.org/10.1007/s11207-016-0863-8.
21. Lockwood J.A. Forbush decreases in the cosmic radiation. Space Sci. Rev. 1971, vol. 12, no. 5, pp. 658-715. DOI:https://doi.org/10.1007/BF00173346.
22. Melkumyan A.A., Belov A.V., Abunina M.A., Abunin A.A., Eroshenko E.A., Oleneva V.A., Yanke V.G. Main properties of Forbush effects related to high-speed streams from coronal holes. Geomagnetism and Aeronomy. 2018a, vol. 58, no. 2, pp. 154-168. DOI:https://doi.org/10.1134/s0016793218020159.
23. Melkumyan A.A., Belov A.V., Abunina M.A., Abunin A.A., Eroshenko E.A., Oleneva V.A., Yanke V.G. Long term changes in the number and magnitude of Forbush effects. Geomagnetism and Aeronomy. 2018b, vol. 58, no. 5, pp. 615-624. DOI:https://doi.org/10.1134/s0016793218050109.
24. Melkumyan A.A., Belov A.V., Abunina M.A., Abunin A.A., Eroshenko E.A., Oleneva V.A., Yanke V.G. Size distribution of Forbush effects. Geomagnetism and Aeronomy. 2018c, vol. 58, no. 6, pp. 809-816. DOI:https://doi.org/10.1134/s0016793218050109.
25. Richardson I.G. Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev. 2004, vol. 111, no. 3, pp. 267-376. DOI:https://doi.org/10.1023/B:SPAC.0000032689.62830.3e.
26. Richardson I., Cane H. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996-2009): Catalog and summary of properties. Solar Phys. 2010, vol. 264, no. 1, pp. 189-237. DOI:https://doi.org/10.1007/s11207-010-9568-6.
27. Storini M., Massetti S., Antalova A. To forecast huge Forbush decreases during solar activity cycles. Proc. 25th ICRC. 1997, vol. 1, pp. 409-412.
28. Thakur N. Smaller Forbush decreases in solar cycle 24: effect of the weak CME field strength? American Geophysical Union, Fall Meeting 2015. id. SH23A-2428.
29. Tlatov A., Vasil’eva V., Tavastsherna K. Coronal holes in solar cycles 21 to 23. Solar Phys. 2014, vol. 289, no. 4, pp. 1349-1358. DOI:https://doi.org/10.1007/s11207-013-0387-4.
30. URL: http://spaceweather.izmiran.ru/eng/dbs.html (accessed November 9, 2018).
31. URL: http://www.swpc.noaa.gov/ftpdir/lists/xray (accessed November 9, 2018).
32. URL: http://omniweb.gsfc.nasa.gov/ow.html (accessed November 9, 2018).
33. URL: http://www.srl.caltech.edu/ACE/ASC/DATA/level3/ icmetable2.htm (accessed November 9, 2018).
34. URL: http://www.solen.info/solar/coronal_holes.html (accessed November 9, 2018).
35. URL: https://cdaw.gsfc.nasa.gov/CME_list (accessed November 9, 2018).
36. URL: http://cr0.izmiran.ru/ThankYou (accessed November 9, 2018).
37. URL: http://www.nmdb.eu (accessed November 9, 2018).