Schmidt Institute of Physics of the Earth, RAS
Moskva, Russian Federation
Schmidt Institute of the Physics of the Earth Russian Academy of Sciencies
Moscow, Russian Federation
Moskva, Russian Federation
Moskva, Russian Federation
Schmidt Institute of Physics of the Earth, RAS
Moscow, Russian Federation
Moskva, Russian Federation
Moskva, Russian Federation
UDK 55 Геология. Геологические и геофизические науки
We address the problem of early diagnostics of geomagnetic storms based on the use of models of coordinates of movements of centers of solar coronal mass ejections (CME) and observations of their angular positions obtained from space monitoring systems. We propose a method for early diagnostics of geomagnetic storms, introduce a function to predict the distance between Earth and CME centers, and establish a decision-making procedure. We give an example of calculating the distance prediction function and implement the diagnostic decision-making procedure based on coordinate models and model observations of angular positions of CME centers. We determine the efficiency of the decision-making procedure for the algorithm for early diagnostics of geomagnetic storms.
coronal mass ejections, geomagnetic storms, space monitoring, diagnostic solutions, triangulation functional
1. Barbashina N.S., Kokoulin P.A., Kompaniets K.G., Petrukhin A.A., Timashkov D.A., Chernov D.V., Shutenko V.V., Yashin I.I., Mannocchi G., Trinchero G., Saavedra O. The URAGAN wide-aperture large-area muon hodoscope. Instruments and Experimental Techniques. 2008, vol. 51, no. 2. P. 180-186.
2. Brueckner G.E., Howard R.A., Koomen M.J., Korendyke C.M., Michels D.J., Moses J.D., Socker D.G., Dere K.P., Lamy P.L., Llebaria A., Bout M.V., Schwenn R., Simnett G.M., Bedford D.K., Eyles C.J. The large angle spectroscopic coronagraph (LASCO). Solar Phys. 1995, vol. 162, iss. 1-2, pp. 357-402.
3. Delaboudiniere J.-P., Artzner G.E., Brunaud J., Gabriel, A.H., Hochedez J.F., Millier F., et al. EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO Mission. Solar Phys. 1995, vol. 162, iss. 1-2, pp. 291-312.
4. Gopalswamy N. History and development of coronal mass ejections as a key player in solar terrestrial relationship. Geosci. Lett. 2016, 3:8, DOI:https://doi.org/10.1186/s40562-016-0039-2.
5. Gopalswamy N., Lara A., Lepping R.P., Kaiser M.L., Berdichevsky D., St. Cyr O.C. Interplanetary acceleration of coronal mass ejection. Geophys. Res. Lett. 2000, vol. 27, pp. 145.
6. Handbook of Cosmic Hazards and Planetary Defense / Ed. J.N. Pelton, F. Allahdadi. Springer International Publishing. 2015, 1127 r.
7. Howard R.A., Moses J.D., Socker D.G., Dere K.P., Cook J.W., Secchi Consortium. Sun Earth connection coronal and heliospheric investigation. Space Sci. Rev. 2008, vol. 136, pp. 67-115.
8. Jin M., Manchester W.B., van der Holst B., Sokolov I., Tóth G., Mullinix R.E., Taktakishvili A., Chulaki A., Gombosi T.I. Data-constrained coronal mass ejections in a global magnetohydrodinamics model. Astrophys. J. 2017, vol. 834, iss. 2, article id. 173, 9 pp. DOI:https://doi.org/10.3847/1538-4357/834/2/173.
9. Michalick G., Gopalswany N., Lara A., Manoham P.K. Arrival time of halo coronal mass ejection in the vicinity of the Earth. Astron. Astrophys. 2004, vol. 423, pp. 729.
10. Mittal N., Narain U.D. On the arrival of halo coronal mass election in the vicinity of the Earth. J. Astron. Geophys. 2015, vol. 4, pp. 100-105.
11. Odstrcil D. Modeling 3-D solar wind structure. Adv. Space Res. 2003, vol. 32, no. 4, pp. 497-506.
12. Owens M., Cargill P. Predictions of the arrival time of Coronal Mass Ejections at 1AU: an analysis of the causes of errors. Ann. Geophys. 2004, vol. 22, pp. 661.
13. Singiresu S. Rao. Engineering Optimization. Theory and Practice. John Wiley & Sons. 2009, 813 p.
14. Solar Eruptions and Energetic Particles / Ed. N. Gopalswamy, R. Mewaldt, J. Torsti. Geophysical Monograph Ser. V. 165. American Geophysical Union. 2006, 385 p.
15. Xue X.H., Wang C.B., Dou X.K. An ice cream cone model for coronal mass ejections. J. Geophys. Res. 2005, vol. 110, pp. A08103.
16. Yashin I.I., Astapov I.I., Barbashina N.S., Borog V.V., Chernov D.V., Dmitrieva A.N., et al. Real-time data of muon hodoscope URAGAN. Adv. Space Res. 2015, vol. 56, iss. 12, pp. 2693-2705.
17. URL: http://helio-weather.net/archive/2008/05 (accessed May 28, 2018).
18. URL: https://stereo.gsfc.nasa.gov/where (accessed May 28, 2018).
19. URL: https://cdaw.gsfc.nasa.gov/CME (accessed May 28, 2018).
20. URL: https://stereo.gsfc.nasa.gov/cgi (accessed May 28, 2018).