from 01.01.1991 to 01.01.2022
Apatity, Murmansk, Russian Federation
Apatity, Russian Federation
In this paper, we numerically estimate the nitric oxide density in auroras, using photometric data on 427.8, 557.7, and 630.0 nm emission intensities. The data were obtained at midnight at observatories of the Polar Geophysical Institute. These estimates were made using a numerical modeling procedure with a time-dependent model of the auroral ionosphere [Dashkevich et al., 2017]. It is shown that the NO density in the maximum of the altitude profile is between (1÷3.3)∙10^8 cm–3. The obtained estimates indicate the absence of a correlation between the [NO]max values and 427.8 nm emission intensities.
nitric oxide, ionosphere component densities, auroras, emission intensity, modeling, electron precipitation
1. Dashkevich Zh.V., Ivanov V.E. Estimation of the NO concentration in the polar region from 391.4, 557.7, and 630.0 nm emission intensities. Cosmic Res. 2017, vol. 55, no. 5, pp. 318-322. DOI:https://doi.org/10.1134/S0010952517050045.
2. Dashkevich Zh.V., Zverev V.L., Ivanov V.E. Ratios of I630.0/I427.8 and I557.7/I427.8 emission intensities in auroras. Geomagnetism and Aeronomy. 2006, vol. 46, no. 3, pp. 366-370. DOI:https://doi.org/10.1134/S001679320603011X.
3. Dashkevich Zh.V., Ivanov V.E, Sergienko T.I., Kozelov B.V. Physicochemical model of the auroral ionosphere. Cosmic Res. 2017, vol. 55, no. 2, pp. 88-100. DOI:https://doi.org/10.1134/S001 0952517020022.
4. Eather R.H., Mende S.B. Systematics in auroral energy spectra. J. Geophys. Res. 1972, vol. 77, no. 4, pp. 660-673. DOI:https://doi.org/10.1029/JA077i004p00660
5. Gérard J.-C., Barth C.A. High-latitude nitric oxide in the lower thermosphere. J. Geophys. Res. 1977, vol. 82, no. 4, pp. 674-680. DOI:https://doi.org/10.1029/JA082i004p00674.
6. Gérard J.-C., Noel C.E. AE-D measurements of the NO geomagnetic latitudinal distribution and contamination by N+(5S) emission. J. Geophys. Res. 1986, vol. 91, no. A9, pp. 10136-10140. DOI:https://doi.org/10.1029/JA091iA09p10136.
7. Rees M.H., Luckey D. Auroral electron energy derived from ratio of spectroscopic emissions. 1. Model computations. J. Geophys. Res. 1974, vol. 79, no. 34, pp. 5181-5186. DOI:https://doi.org/10.1029/JA079i034p05181.
8. Rusch D.W., Barth C.A. Satellite measurements of nitric oxide in the polar region. J. Geophys. Res. 1975, vol. 80, no. 25, pp. 3719-3721. DOI:https://doi.org/10.1029/JA080i025p03719.
9. Sergienko T.I., Ivanov V.E. A new approach to calculate the excitation of atmospheric gases by auroral electron impact. Ann. Geophys. 1993, vol. 11, no. 8, pp. 717-727.
10. Sharp W.E. NO2 continuum in aurora. J. Geophys. Res. 1978, vol. 83, no. 9, pp. 4373-4376. DOI:https://doi.org/10.1029/JA083iA09p04373.
11. Siskind D.E., Barth C.A., Evans D.S., Roble R.G. The response of the thermospheric nitric oxide to an auroral storm. 2. Auroral latitudes. J. Geophys. Res. 1989, vol. 94, no. A12, pp.16899-16911. DOI:https://doi.org/10.1029/JA094iA12p16899.
12. Solomon C.S., Barth C.A., Bailey S.M. Auroral production of nitric oxide measured by the SNOE satellite. Geophys. Res. Lett. 1999, vol. 26, pp. 1259-1262. DOI:https://doi.org/10.1029/1999GL900235.
13. Stevens M.H., Conway R.R., Cardon J.G., Russell J.M. MAHRSI observations of nitric oxide in the mesosphere and lower thermosphere. Geophys. Res. Lett. 1997, vol. 24, pp. 3213-3216. DOI:https://doi.org/10.1029/97GL03257.
14. Swider W., Narcisi R.S. Auroral E-region: Ion composition and nitric oxide. Planet. Space Sci. 1977, vol. 25, no. 2, pp. 103-116. DOI:https://doi.org/10.1016/0032-0633(77)90014-9.