Russian Federation
The purpose of this article is to determine the role and place of school geometry in the subject olympiad system. For this, the authors turn to the experience of Russia in organizing and conducting geometric olympiads for schoolchildren, exploring the specifics of the olympiads named after named I.F. Sharygin, named S.A. Anischenko, named A.P. Savina, Moscow and Iran olympiads. The objectives and themes of full-time, extramural, oral geometric olympiads are defined. It is revealed that the topics of topology, projective, affine, combinatorial sections of geometry constitute the content of olympiad geometry. The study showed that the tasks of the olympiad work on geometry checked mathematical skills to perform actions with geometric figures, coordinates and vectors; build and explore simple mathematical models; apply acquired knowledge and skills in practical activities. The conclusions are made about the need to include tasks of geometric content in the block of olympiad tasks for the development of spatial thinking of schoolchildren.
olympiad, geometry, spatial thinking, intramural and extramural tours.
1. Abdulkin V.V., Busarkina L.R., Mayer V.R. Sbornik olimpiadnykh zadach po geometrii dlya uchashchikhsya 8-11 klassov. - Krasnoyarsk: KGPU im. V.P. Astaf'eva, 2011. - 204 s.
2. Agakhanov N. Kh. Rabota s matematicheski odarennymi det'mi v mnogourovnevoy sisteme predmetnykh olimpiad i konkursov // Profil'naya shkola. - 2018. - №. 5. - S. 19-26. DOI: https://doi.org/10.12737/article_5bbf0645281074.31484397
3. Sharygin I.F. Obrazovanie, kotoroe my mozhem poteryat'. - Moskva: MGU im. M.V. Lomonosova, 2002. - 288 s.
4. Sayt: Geometricheskaya olimpiada im. Sharygina [Elektronnyy resurs]. URL: http://geometry.ru/olimp/ olimpsharygin.php
5. Sayt: Iranskaya olimpiada po geometrii [Elektronnyy resurs]. URL: http://igo-official.ir
6. Sal'kov N.A., Vyshnepol'skiy V.I., Aristov V.M., Kulikov V.P. Olimpiady po nachertatel'noy geometrii kak katalizator evristicheskogo myshleniya// Geometriya i grafika. - 2017. - T. 5. - № 2. - S. 93-101. DOI:https://doi.org/10.12737/article_ 5953f3767b1e80.12067677
7. Hang K.H., Wang H. Solving problems in geometry. Insights and strategies for mathematical olympiad and competitions. - World scientific publishing comp., 2017. - Mathematical olympiad series. - Vol. 10. - 369 p.
8. Pohoata C., Korsky S., Andreescu T. Lemmas in olympiad geometry. - Washington: Mathematical assocoation of America, 2016. - 373 p.