Apatity, Russian Federation
Apatity, Russian Federation
Apatity, Russian Federation
Apatity, Murmansk, Russian Federation
Apatity, Russian Federation
This paper explores the applied use of the RUSCOSMICS software package [http://ruscosmics.ru] designed to simulate propagation of primary cosmic ray (CR) particles through Earth’s atmosphere and collect information about characteristics of their secondary component. We report the results obtained for proton fluxes with energy distributions corresponding to the differential spectra of galactic CR (GCR) and solar CR (SCR) during ground level enhancement (GLE) events GLE65 and GLE67. We examine features of the geometry of Earth’s atmosphere, parametrization methods, and describe a primary particle generator. The typical energy spectra of electrons obtained both for GCR and for GLE65 provide information that allows us to quantitatively estimate the SCR contribution to the enhancement of secondary CR fluxes. We also present altitude dependences of ionization rate for GCR and both the GLE events for several geomagnetic cutoff rigidity values. The conclusion summarizes and discusses the prospects for future research.
cosmic rays, astrophysics, Monte Carlo method, GEANT4, particle physics, numerical simulation
1. Agostinelli S., Allison J., Amako K., Apostolakis J., Araujo H., Arce P., et al. Geant4 - a simulation toolkit. Nuclear Instruments and Methods A. 2003, vol. 506, iss. 3, pp. 250-303. DOI:https://doi.org/10.1016/S0168-9002(03)01368-8.
2. Bazilevskaya G.A., Usoskin I.G., Flückiger E.O., Harrison R.G., Desorgher L., Bütikofer R., Krainev M.B., Makhmutov V.S., Stozhkov Y.I., Svirzhevskaya A.K., Svirzhevsky N.S., Kovaltsov G.A. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 2008, vol. 137, iss. 1-4, pp. 149-173. DOI:https://doi.org/10.1007/s11214-008-9339-y.
3. GEANT4 Physics Reference Manual. URL: http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReference Manual/fo/PhysicsReferenceManual.pdf (accessed June 10, 2019).
4. GOST 25645.122-85. Protony galakticheskikh kosmicheskikh luchei. Energeticheskie spectry [State Standard 25645.122-85. Protons of Galactic Cosmic Rays. Energy Spectra]. Moscow, 1985, p. 2.
5. Maurchev E.A., Balabin Yu. V. RUSCOSMIC - the new software toolbox for detailed analysis of cosmic rays interactions with matter. Solar-Terrestrial Physics. 2016, vol. 2, no. 4, pp. 3-10. DOI:https://doi.org/10.12737/24269.
6. Maurchev E.A., Balabin Yu.V., Gvozdevsky B.B., Vashenyuk E.V. A new numerical model for investigating cosmic rays in the Earth’s atmosphere. Bull. Russ. Acad. Sci. Phys. 2015, vol. 79, no. 5, pp. 657-659. DOI:https://doi.org/10.3103/S1062873815050305.
7. Maurchev E.A., Mikhalko E.A., Germanenko A.V., Balabin Yu.V. The experimental methods for validating the results of modeling the cosmic rays interaction with the Earth’s atmosphere. Trudy Kol’skogo nauchnogo tsentra RAN [Proc. of Kola Science Center RAS]. 2018, vol. 9, no. 5-4, pp. 76-81. DOI:https://doi.org/10.25702/KSC.2307-5252.2018.9.5.76-81. (In Russian).
8. Perez-Peraza J., Gallegos-Cruz A., Vashenyuk E.V., Balabin Yu.V., Miroshnichenko L.I. Relativistic proton production at the Sun in the October 28th, 2003 solar event. Adv. Space Res. 2006, vol. 38, iss. 3, pp. 418-424. DOI:https://doi.org/10.1016/j.asr. 2005.01.082.
9. Perez-Peraza J., Vashenyuk E.V., Gallegos-Cruz A., Balabin Yu.V., Miroshnichenko L.I. Relativistic proton at the Sun in the 20 January 2005 solar event. Adv. Space Res. 2008, vol. 41, iss. 6, pp. 947-954. DOI:https://doi.org/10.1016/j.asr.2007.04.054.
10. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, vol. 107, iss. A12, 1468. DOI:https://doi.org/10.1029/2002JA009430.
11. Stozhkov Yu.I., Svirzhevsky N.S., Bazilevskaya G.A., Kvashnin A.N., Makhmutov V.S., Svirzhevskaya A.K. Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere. Adv. Space Res. 2009, vol. 44, iss. 10, pp. 1124-1137. DOI:https://doi.org/10.1016/j.asr.2008.10.038.
12. Thébault E., Finlay C.C., Beggan C.D., Alken P., Aubert J., Barroiset O., et al. International Geomagnetic Reference Field: the 12th generation. Earth, Planets and Space. 2015, vol. 67, 79. DOI:https://doi.org/10.1186/s40623-015-0228-9.
13. Usoskin I.G., Desorgher L., Velinov P., Storini M., Flückiger E.O., Bütikofer R., Kovaltsov G.A. Ionization of the earth’s atmosphere by solar and galactic cosmic rays. Acta Geophysica. 2009, vol. 57, no. 1, pp. 88-101. DOI:https://doi.org/10.2478/s 11600-008-0019-9.
14. Vashenyuk E.V., Balabin Yu.V., Miroshnichenko L.I. Relativistic solar protons in the ground level event of 23 February 1956: New study. Adv. Space Res. 2008, vol. 41, pp. 926-935. DOI:https://doi.org/10.1016/j.asr.2007.04.063.
15. Vashenyuk E.V., Balabin Yu.V., Gvozdevsky B.B. Features of relativistic solar proton spectra derived from ground level enhancement events (GLE) modeling. Astrophysics and Space Sciences Transactions. 2011, vol. 7, iss. 4, pp. 459-463. DOI:https://doi.org/10.5194/astra-7-459-2011.
16. Velinov P.I.Y., Balabin Yu.V., Maurchev E.A. Calculations of enhanced ionization in strato-troposphere during the greatest ground level enhancement on 23 February 1956 (GLE 05). Compt. rend. Acad. bulg. Sci. 2017, vol. 70, no. 4, pp. 545-554.
17. URL: http://ruscosmics.ru (accessed June 10, 2019).
18. URL: http://ruscosmics.ru/CR.htm (accessed June 10, 2019).