APPROXIMATION OF LINEAR SETS IN THE PLANE
Abstract and keywords
Abstract (English):
A few general lines in the ordinary Euclidean plane are said to be line generators of a plane linear set. To be able to say that every line of the set belongs to one-parametrical line set we have to find their envelope. We thus create a pencil of lines. In this article it will be shown that there are a finite number of pencils in one linear set. To find a pencil of lines the linear parametrical approximation is applied. Almost all of problems concerning the parametrical approximation of figure sets are well known and deeply developed for any point sets. The problem of approximation for non-point sets is an actual one. The aim of this paper is to give a path to parametrical approximation of linear sets defined in plane. The sets are discrete and consist of finite number of lines without any order. Each line of the set is given as y = ax + b. Parametrical approximation means a transformation the discrete set of lines into completely continuous family of lines. There are some problems. 1. The problem of order. It is necessary to represent the chaotic set of lines as well-ordered one. The problem is solved by means of directed circuits. Any of chaotic sets has a finite number of directed circuits. To create an order means to find all directed circuits in the given set. 2. The problem of choice. In order to find the best approximation, for example, the simplest one it is necessary to choose the simplest circuit. Some criteria of the choice are discussed in the paper. 3. Interpolation the set of line factors. A direct approach would simply construct an interpolation for all line factors. But this can lead to undesirable oscillations of the line family. To eliminate the oscillations the special factor interpolation are suggested. There are linear sets having one or several multiple points, one or several multiple lines and various combinations of multiple points and lines. Some theorems applied to these cases are formulated in the paper.

Keywords:
parametrical approximation, linear set, ordered set, directed circuit, interpolation, multiple line
References

1. Boldyrev V.I. Metod kusochno-linejnoj approksimacii dlya resheniya zadach optimal'nogo upravleniya [The piecewise linear approximation method for solving optimal control problems]. Differencial'nye uravneniya i processy upravleniya [Differential equations and control processes]. 2004, I. 1, pp. 28-123. (in Russian)

2. Bubyr' D.S. Primenenie principa kusochnosti pri prognozirovanii sostoyaniya tekhnicheskoj sistemy [Application of the principle of piecewiseness in predicting the state of a technical system]. Sovremennye problemy proektirovaniya, proizvodstva i ekspluatacii radiotekhnicheskih system [Modern problems of design, production and operation of radio systems]. 2015, I. 1(9), pp. 223-225. (in Russian)

3. Vasil'ev A.A. Nekotorye primeneniya vychislitel'noj geometrii k zadacham linejnogo programmirovaniya [Some applications of computational geometry to linear programming problems]. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika, mekhanika, informatika [Bulletin of the Syktyvkar University. Series 1: Mathematics, Mechanics, Computer Science]. 2009, I. 10, pp. 113-118. (in Russian)

4. Girsh A.G. Ogibayushchaya semejstva linij [Envelope of the line family]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 4, pp. 14-18. DOIhttps://doi.org/10.12737/22839. (in Russian)

5. Gol'dovskaya M.D. Algoritmy kusochno-linejnoj approksimacii slozhnyh zavisimostej i ih prakticheskoe ispol'zovanie [Algorithms for piecewise linear approximation of complex dependencies and their practical use]. Upravlenie razvitiem krupnomasshtabnyh sistem MLSD’2008 [Management of the development of large-scale systems MLSD’2008]. 2008, pp. 91-93. (in Russian)

6. Dmitriev A.G. Algoritm kusochno-nepreryvnoj approksimacii eksperimental'nyh krivyh [Algorithm for piecewise continuous approximation of experimental curves]. Avtomatizaciya i energosberezhenie mashinostroitel'nogo i metallurgicheskogo proizvodstv, tekhnologiya i nadezhnost' mashin, priborov i oborudovaniya [Automation and energy saving of machine-building and metallurgical industries, technology and reliability of machines, instruments and equipment]. 2016, pp. 59-62. (in Russian)

7. Dorofeyuk Yu.A. Strukturnaya identifikaciya slozhnyh ob"ektov upravleniya na baze metodov kusochnoj approksimacii [Structural identification of complex control objects based on piecewise approximation methods]. Upravlenie bol'shimi sistemami [Management of large systems]. 2010, I. 30, pp. 79-88. (in Russian)

8. Ivanov G.S. Nelinejnye formy v inzhenernoj grafike [Nonlinear forms in engineering graphics]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 2, pp. 4-12. DOIhttps://doi.org/10.12737/article_5953f295744f77.58727642. (in Russian)

9. Ivanov N.V. Ierarhicheskie kusochno-linejnye modeli nablyudenij mnogomernyh ob"ektov [Hierarchical piecewise linear models of observations of multidimensional objects]. Vestnik Sibirskogo gos. aerokosmicheskogo universiteta [Bulletin of the Siberian state. aerospace university]. 2007, I. 3(16), pp. 33-36. (in Russian)

10. Karmen T. Algoritmy: postroenie i analiz [Algorithms: construction and analysis]. Moscow: MCMNO Publ., 2000. 960 p. (in Russian)

11. Konopackij E.V. Vychislitel'nye algoritmy modelirovaniya odnomernyh obvodov cherez k napered zadannyh tochek [Computational algorithms for modeling one-dimensional contours through k ahead of given points]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 3, pp. 20-32. DOIhttps://doi.org/10.12737/article_5bc457ece18491.72807735. (in Russian)

12. Lebedev P.D. Approksimaciya mnozhestv na ploskosti optimal'nymi naborami krugov [Approximation of sets in the plane by optimal sets of circles]. Avtomatika i telemekhanika [Automation and Telemechanics]. 2012, I. 3, pp. 79-90. (in Russian)

13. Ligun A.A. Identifikaciya slozhnyh ploskih konturov detalej v usloviyah avtomatizirovannogo proizvodstva [Identification of complex flat contours of parts in an automated production environment]. Nauka - proizvodstvu [Science - to production]. Kiev, 1991, pp. 306-311. (in Russian)

14. Lyashkov A.A. Osobennost' otobrazheniya giperpoverhnosti chetyrekhmernogo prostranstva [A singularity of the mapping of a hypersurface of four-dimensional space]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 3, pp. 3-10. - DOIhttps://doi.org/10.12737/article_59bfa3078af4c1.45321238. (in Russian)

15. Panchuk K.L. Geometricheskaya model' generacii semejstva konturno-parallel'nyh linij dlya avtomatizirovannogo rascheta traektorii rezhushchego instrumenta [A geometric model for generating a family of contour-parallel lines for automated calculation of the path of a cutting tool]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 1, pp. 3-13. - DOIhttps://doi.org/10.12737/article_5c9201eb1c5f06.47425839. (in Russian)

16. Preparata F. Vychislitel'naya geometriya: Vvedenie [Computational geometry: Introduction]. Moscow: Mir Publ., 1989. 478 p. (in Russian)

17. Sarkisyan Yu.L. Approksimacionnyj sintez mekhanizmov [Approximate synthesis of mechanisms]. Moscow: Nauka Publ., 1982. 304 p. (in Russian)

18. Sosov E.N. Ob approksimativnyh svojstvah mnozhestv v special'nom metricheskom prostranstve [About approximative properties of sets in a special metric space]. Izv. Vuzov. Matematika [Izv. Universities. Maths]. 1999, I. 6, pp. 81-84. (in Russian)

19. Foks A. Vychislitel'naya geometriya. Primenenie v proektirovanii i na proizvodstve [Computational geometry. Application in design and production]. Moscow: Mir Publ., 1982. 304 p. (in Russian)

20. Shenen P. Matematika i SAPR [Mathematics and CAD]. Moscow: Mir Publ., 1988. (in Russian)

21. Yurkov V.Yu. Matematicheskoe modelirovanie linejchatyh monoidal'nyh giperpoverhnostej [Mathematical modeling of ruled monoidal hypersurfaces]. Omskij nauchnyj vestnik [Omsk Scientific Herald]. 2015, I. 2(140), pp. 5-7. (in Russian)

22. Dye R.H. The parabola as the envelope of a set of oblique Simson lines of a triangle [Tekst] / R.H. Dye // Nieuw Arch. Wiskd. - 1988. - V.4. - I. 6. - P.251 -254.

23. Eck M. Multiresolution analysis of arbitrary meches [Tekst] / M. Eck, A.D. De Rose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle // Proceedings of SIGGRAPH. - 1995. - P. 173 - 182.

24. Edelsbrunner H. Current open problems in discrete and computational geometry [Tekst] / H. Edelsbrunner, A. Ivanov, R. Karasev // Modelirovanie i analiz informacionnyh sistem. - 2012. - T.19. - № 5. - S. 5-17.

25. Gordon W.J. Blending function method of bivariate and multivariate interpolation and approximation [Tekst] / W.J. Gordon // SIAM J. Num. Anal. - 1971. - V.8. - P. 158- 177.

26. Overmars M.H. Maintenance of configurations in the plane [Tekst]/ M.H. Overmars, J. van Leeuwen // J. Comput. and Syst. Sci. // 1981. - V. 23. - P. 166-204.

27. Pottmann H. Approximation in line space - applications in robot kinematics and surface reconstruction [Tekst] / H. Pottmann, M. Peternell, B. Ravani // Advances in Robot Kinematics: Analysis and Control. - 1998. - P. 403-412.

28. Shcherbatov I. A. Analysis and Modeling of Complex Engineering Systems based on the Component Approach [Tekst] / I.A. Shcherbatov, O.M. Protalinskii, V.N. Esaulenko // World Applied Sciences Journal 24 (Information Technologies in Modern Industry, Education and Society). - 2013. - P.276-283.

Login or Create
* Forgot password?