Moskva, Russian Federation
Schmidt Institute of Physics of the Earth, RAS
Moscow, Russian Federation
Moskva, Russian Federation
Moskva, Russian Federation
We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data.
cosmic rays, coronal mass ejections, angular distribution, anisotropy
1. Astapov I.I., Barbashina N.S., Bogoutdinov Sh.R., Borog V.V., Veselovsky I.S., Getmanov V.G., et al. Investigation of muon flux anisotropy during non-geoeffective coronal mass ejections in 2016. Yadernaya fizika i inzhiniring [Nuclear Physics and Engineering]. 2017, vol. 8, no. 5, pp. 478-482. (In Russian). DOI:https://doi.org/10.1134/S207956291704003.
2. Berezinsky V.S., Bulanov S.V., Ginzburg V.L., Dogiel V.A., Ptuskin V.S. Astrofizika kosmicheskikh luchej [Astrophysics of cosmic rays]. Moscow, Nauka Publ., 1984. 360 p. (In Russian).
3. Burlaga L.F. Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 1988, vol. 93, no. A7, pp. 7217-7224. DOI:https://doi.org/10.1029/JA093iA07p07217.
4. Dobrovolsky M.N., Astapov I.I., Barbashina N.S., Gvishiani A.D., Getmanov V.G., Dmitrieva A.N., et al. The method of search for local anizotropy of muon fluxes in matrix-form data of URAGAN Hodoscope. Izvestiya RAN. Ser. fizicheskaya [Bull. of the Russian Academy of Sciences. Physics]. 2019, vol. 83, no. 5. (In Russian). (In print).
5. Dorman L.I., Villoresi G., Belov A.V., Eroshenko E.A., Iucci N., Yanke V.G., et al. Cosmic-ray forecasting features for big Forbush decreases. Nuclear Physics B (Proc. Suppl.). 1995, vol. 39, no. 1, pp. 136-143. DOI:https://doi.org/10.1016/0920-56332(95)00016-3.
6. Getmanov V. G., Gvishiani A.D., Sidorov R.V., Soloviev A.A., Bogoutdinov Sh.R., Yashin I.I., et al. Filtering of observations of the angular distributions of muon fluxes from the URAGAN Hodoscope. Yadernaya fizika i inzhiniring [Nuclear Physics and Engineering]. 2017a, vol. 8, no. 6, pp. 506-512. (In Russian). DOI:https://doi.org/10.1134/S207956291704011X.
7. Getmanov V.G., Gvishiani A.D., Sidorov R.V., Soloviev A.A., Bogoutdinov Sh.R., Yashin I.I., et al. Mathematical model for observations from a muon hodoscope including the kinematics and geometry of solar coronal mass ejections. Yadernaya fizika i inzhiniring [Nuclear Physics and Engineering]. 2017b, vol. 8, no. 5, pp. 432-438. (In Russian). DOI: 10.1134/ S2079562917040108.
8. Getmanov V.G., Gvishiani A.D., Peregoudov D.V., Yashin I.I., Soloviev A.A., Dobrovolsky M.N., Sidorov R.V. Early diagnostics of geomagnetic storms based on observations of space monitoring systems. Solnechno-zemnaja fizika [Solar-Terrestrial Physics]. 2019, vol. 5, no. 1, pp. 43-50. DOI:https://doi.org/10.12737/stp-51201906.
9. Karelin A., Adriani O., Barbarino G., Bazilevskaya G.A., Bellotti R., Boezio M., et al. The large-scale anisotropy with the PAMELA calorimeter. ASTRA Proc. 2015, vol. 2, pp. 35-37. DOI:https://doi.org/10.5194/ap-2-35-2015.
10. Krymsky G.F., Krivoshapkin P.A., Mamrukova V.P., Gerasimova S.K. Anisotropy of high-energy cosmic rays. Astron. Lett. 2010, vol. 36, no. 8, pp. 596-604. DOI: 10.1134/ S1063773710080086.
11. Landau L.D., Lifshitz E.M. Mekhanika [Mechanics]. Moscow, Nauka Publ., 1988a. 216 p. (In Russian).
12. Landau L.D., Lifshitz E.M. Teoriya polya [The Classical Theory of Fields]. Moscow, Nauka Publ., 1988b. 512 p. (In Russian).
13. Landau L.D., Lifshitz E.M. Elektrodinamika sploshnykh sred [Electrodynamics of Continuous Media]. Moscow, Nauka Publ., 1992. 664 p. (In Russian).
14. Osherovich V.A., Farrugia C.J., Burlaga L.F. Nonlinear evolution of magnetic flux ropes 1. Low-beta limit. J. Geophys. Res. 1993, vol. 98, no. A8, pp. 13225-13231. DOI:https://doi.org/10.1029/93JA00271.
15. Parker E.N. The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 1965, vol. 13, pp. 9-49. DOI:https://doi.org/10.1016/0032-0633(65)90131-5.
16. Yashin I.I., Astapov I.I., Barbashina N.S., Borog V.V., Chernov D.V., Dmitrieva A.N., et al. Real-time data of muon hodoscope URAGAN. Adv. Space Res. 2015, vol. 56, no. 12, pp. 2693-2705. DOI:https://doi.org/10.1016/j.asr.2015.06.003.