GEOMETRIC MODELING OF STRESS VISUALIZATION TOOLS BASED ON THE FUNCTIONAL-VOXEL METHOD
Abstract and keywords
Abstract (English):
One of the approaches to the construction of graphic images of the stress state for the force vector applied to a point is considered in this work. Has been proposed a geometric model for a continuous medium, formed by a bunch of projection planes for each point of the examined object’s space. This permits to obtain a model for a volume vector in the form of a distributed decomposition into stress components at each point specified by a bunch of projection planes. The building a model for a volume vector, defined as a set of specified laws of direction and length, in the context of modeling stress from an applied force vector to a selected point, is based on strength of materials’ classical laws for calculation the stress state values at an inclined section. Such approach allows use a voxel graphic structure for computer representation of the simulated stress, rather than a finite element mesh. In such a case, there is no obtained result’s error dependence on the spatial position of the mesh nodal points, which is often a problem in FEM calculations. The resulting functional-voxel computer model of the volume stress vector is a structural unit for modeling the distributed load on areas of complex configuration. In this case, the elementary summation of such vectors allows any uneven distribution of the load relative to each point on the specified area. The considered approach works well with geometric models initially represented analytically in the form of a function space (for example, models obtained by the R-functional modelling – RFM-method), and reduced to functional-voxel computer models. A method for deformation modeling based on obtained stresses by means of local transformations of the function space, describing the investigated geometric object, is demonstrated.

Keywords:
discrete geometric model, finite element method (FEM), functional-voxel method (FVM), volume vector, deformation modeling
References

1. Bondarev A.E., Chechetkin V.M., Galaktionov V.A. Analiz razvitiya koncepcij i metodov vizual'nogo predstavleniya dannyh v nauchnyh issledovaniyah zadach vychislitel'noj fiziki [Analysis of the development of concepts and methods of visual presentation of data in scientific research of problems of computational physics]. Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki [Journal of Computational Mathematics and Mathematical Physics]. 2011, V. 51, I. 4, pp. 669-683. (in Russian)

2. Bulychev R.N., Ayusheev T.V. Opisanie processa deformirovaniya listovogo materiala s ispol'zovaniem parametricheskogo tverdotel'nogo modelirovaniya [Description of the deformation process of sheet material using parametric solid modeling]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 1, pp. 48-56. DOI:https://doi.org/10.12737/article_5ad09a84cbd105.88047545. (in Russian)

3. Burkov P.V., Burkova S.P. Trekhmernoe napryazhenno-deformirovannoe sostoyanie truby s ruchejkovym iznosom pri slozhnom nagruzhenii [Three-dimensional stress-strain state of a pipe with rivulet wear under complex loading]. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal [International scientific research journal]. 2015, I. 4-1 (35), pp. 46-49. (in Russian)

4. Gordon I.I., Delone D.A., Raikov D.A. Analiticheskaya geometriya tom I II (recenziya) [Analytical geometry volumes I and II (review)]. Uspekhi matematicheskoj nauki [Advances in Mathematical Science]. 1950, V. 5, I. 6, pp. 180-186. (in Russian)

5. Dmitriev S.V. Reshenie uprugoj zadachi metodom konechnyh elementov. Vizualizaciya tenzora napryazhenij [Solving an elastic problem by the finite element method. Visualization of the stress tensor]. GIAB [MIAB]. 2017, I. 7, pp. 222-227. (in Russian)

6. Konopatsky E.V. Modelirovanie approksimiruyushchego 16-tochechnogo otseka poverhnosti otklika primenitel'no k resheniyu neodnorodnogo uravneniya teploprovodnosti [Modeling the approximating 16-point section of the response surface as applied to solving the inhomogeneous heat equation]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 2, pp. 39-46. DOI:https://doi.org/10.12737/article_5d2c1a551a22c5.12136357. (in Russian)

7. Kuprikov M.Yu., Markin L.V. Geometricheskie aspekty avtomatizirovannoj komponovki letatel'nyh apparatov [Geometric aspects of automated assembly of aircraft]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 3, pp. 69-87. DOI:https://doi.org/10.12737/article_5bc45cbccfbe67.89281424. (in Russian)

8. Leparov M.N. Geometricheskoe preobrazovanie sborochnyh edinic [Geometric transformation of assembly units]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 3, pp. 62-72. DOI:https://doi.org/10.12737/21535. (in Russian)

9. Leparov M.N. O nauke «Geometriya tekhnicheskih ob"ektov» [About the science "Geometry of technical objects]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 2, pp. 28-38. DOI:https://doi.org/10.12737/article_5d2c187251b6c8.21632403. (in Russian)

10. Loktev M.A., Tolok A.V. Metod funkcional'noj vokselizacii poligonal'nyh ob"ektov na osnove matematicheskogo apparata R-funkcij [Method of functional voxelization of polygonal objects based on the mathematical apparatus of R-functions]. Prikladnaya informatika [Applied Informatics]. 2016, V. 11, I. 1 (61), pp. 127-134. (in Russian)

11. Lotorevich E.A. Geometricheskie preobrazovaniya prostranstva funkcional'no-voksel'noj modeli [Geometric transformations of the functional-voxel model space]. Moscow, 2016, 111 p. (in Russian)

12. Maystrenko A.V. Modelirovanie otryva obshivki ot korpusa na ispytatel'nom stende [Simulation of skin separation from the hull on a test bench]. Vestnik evrazijskoj nauki [Bulletin of Eurasian Science]. 2013, I. 5 (18), p. 136. (in Russian)

13. Malyar V.V., Painter V.V. Metod opredeleniya temperaturnyh napryazhenij v asfal'tobetone s pomoshch'yu metoda konechnyh elementov [Method for determining thermal stresses in asphalt concrete using the finite element method]. Vestnik HNADU [Bulletin of KNAHU]. 2016, I. 72, pp. 102-106. (in Russian)

14. Markin L.V. Diskretnye geometricheskie modeli ocenki stepeni zatenennosti v gelioenergetike [Discrete geometric models for assessing the degree of shading in solar energy]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 1, pp. 28-45. DOI:https://doi.org/10.12737/article_5c9202d8d821b0.81468033. (in Russian)

15. Markin L.V. O putyah sozdaniya geometricheskih modelej [On the ways of creating geometric models]. Geometriya i grafika [Geometry and Graphics]. 2015, V. 3, I. 1, pp. 64-69. DOI:https://doi.org/10.12737/10460. (in Russian)

16. Mikhailenko A.V., Tolok A.V. Formoobrazuyushchie poverhnosti w-urovnya R-funkcional'nogo modelirovaniya (RFM) v organizacii tekhnologii obrabotki detalej slozhnoj formy [Shaping surfaces of the w-level R-functional modeling (RFM) in the organization of processing technology for complex-shaped parts]. Vestnik MGTU Stankin [Bulletin of MSTU Stankin]. 2015, V. 2, I. 33, pp. 73-77. (in Russian)

17. Mostakov V.A., Rusanov O. A. Ocenka napryazhenno-deformirovannogo sostoyaniya kruglyh rezcov metodom konechnyh elementov [Evaluation of the stress-strain state of circular cutters by the finite element method]. Gornyj informacionno-analiticheskij byulleten' (nauchno-tekhnicheskij zhurnal) [Mining information and analytical bulletin (scientific and technical journal)]. 2009, I. 4, pp. 87-89. (in Russian)

18. Panchuk K.L., Myasoedova T.M., Krysova I.V. Geometricheskaya model' generacii semejstva konturno-parallel'nyh linij dlya avtomatizirovannogo rascheta traektorii rezhushchego instrumenta [Geometric model of generating a family of contour-parallel lines for automated calculation of the trajectory of the cutting tool]. Geometriya i grafika [Geometry and graphics]. 2019, V. 7, I. 1, p. 3-24. DOI:https://doi.org/10.12737/article_5c92012c51 bba1.17153893. (in Russian)

19. Plaksin A.M., Pushkarev S.A. Geometricheskoe modelirovanie teplovyh harakteristik ob"ektov funkcional'no-voksel'nym metodom [Geometric modeling of objects’ thermal characteristics by the functional-voxel method]. Geometriya i grafika [Geometry and Graphics]. 2020, V. 8, I. 1, pp. 25-32. DOI:https://doi.org/10.12737/2308-4898-2020-25-32. (in Russian)

20. Pritykin F.N., Khomchenko V.G., Yanishevskaya A.G., Nebritov V.I. Vizualizaciya linejnyh smeshchenij uzlovyh tochek pri realizacii mgnovennyh sostoyanij razlichnyh konfiguracij ruki androidnogo robota [Visualization of linear displacements of nodal points in the implementation of instant states of various configurations of an android robot arm]. Geometriya i grafika [Geometry and graphics]. 2019, V. 7, I. 3, p. 51-59. DOI:https://doi.org/10.12737/article_5dce6b81e2a808.81762326. (in Russian)

21. Pushkarev S.A., Lotorevich E.A., Silantyev D.A. Voksel'no-matematicheskoe modelirovanie pri reshenii zadach opredeleniya ploshchadi dlya poverhnostej detalej [Voxel-mathematical modeling in solving problems of determining the area for surfaces of parts]. Informacionnye tekhnologii v proektirovanii i proizvodstve [Information technologies in design and production]. 2013, V. 3, pp. 29-33. (in Russian)

22. Rakhimov V.R., Kazakov A.N. Ocenka napryazhenno-deformirovannogo sostoyaniya massiva s uchetom tektonicheskih napryazhenij metodom konechnyh elementov [Assessment of the stress-strain state of the massif taking into account tectonic stresses by the finite element method]. Gornyj informacionno-analiticheskij byulleten' (nauchno-tekhnicheskij zhurnal) [Mining information and analytical bulletin (scientific and technical journal)]. 2014, I. 10, pp. 151-162. (in Russian)

23. Rvachev V.L. Teoriya R-funkcij i nekotorye ee prilozheniya [The theory of R-functions and some of its applications]. Kiev, Naukova Dumka Publ., 1982. 552 p. (in Russian)

24. Reshetnikov M.K., Ryazanov S.A. Ocenka parametrov chervyachnyh peredach na osnove metodov 3D komp'yuternoj grafiki [Assessment of the parameters of worm gears on the basis of 3D computer graphics methods]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 1, pp. 34-38. DOI:https://doi.org/10.12737/article_ 5ad0971a86af78. 651678. (in Russian)

25. Ryazanov S.A. Geometricheskaya model' proizvodyashchej poverhnosti, ekvivalentnoj rabochej poverhnosti zuboreznogo instrumenta «chervyachnaya freza» [Geometric model of the generating surface, equivalent to the working surface of the gear cutting tool "hob cutter"]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 2, pp. 56-60. DOI:https://doi.org/10.12737/article_5d2c24f391d6b6.68532534. (in Russian)

26. Sal'kov N.A. Geometricheskoe modelirovanie i nachertatel'naya geometriya [Geometric modeling and descriptive geometry]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 4, pp. 31-40. DOI:https://doi.org/10.12737/22841. (in Russian)

27. Sal'kov N.A. Geometricheskaya sostavlyayushchaya tekhnicheskih innovacij [Geometric component of technical innovations]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 8, I. 2, pp. 85-93. DOI:https://doi.org/10.12737/article_5b55a5163fa053.07622109. (in Russian)

28. Sapozhnikov S.B., Abdrakhimov R.R., Shakirov A.A. Konstrukcionnaya prochnost' polimernyh kompozitov na osnove korotkih steklyannyh volokon [Structural strength of polymer composites based on short glass fibers]. Vestnik YUUrGU. Seriya: Matematika. Mekhanika. Fizika [Bulletin of SUSU. Series: Mathematics. Mechanics. Physics]. 2014, I. 1. pp. 50-54. (in Russian)

29. Strukov A.N. Konechno-elementnyj analiz processov formoobrazovaniya listovyh zagotovok pri povyshennyh temperaturah s uchetom processov relaksacii napryazhenij [Finite-element analysis of the processes of forming sheet blanks at elevated temperatures, taking into account the processes of stress relaxation]. Vestnik VGTU [Bulletin of the VSTU]. 2011, V. 7, I. 12-2, pp. 72-74. (in Russian)

30. Tkachev V.I, Chudinov V.V., Morozkin N.D. Raschet dinamiki termouprugih napryazhenij v keramicheskom klapane metodom konechnyh elementov [Calculation of the dynamics of thermoelastic stresses in a ceramic valve by the finite element method]. Vestnik Bashkirskogo universiteta [Bulletin of the Bashkir University]. 2014, I. 1, pp. 8-13. (in Russian)

31. Tolok A.V. Funkcional'no-voksel'nyj metod v komp'yuternom modelirovanii [Functional-voxel method in computer modeling]. FIZMATLIT Publ., Moscow, 2016. 112 p. (in Russian)

32. Tolok A.V., Tolok N. B. Osnovy analiticheskogo proektirovaniya na funkcional'no-voksel'nyh modelyah [Fundamentals of analytical design based on functional voxel models]. Informacionnye tekhnologii v proektirovanii i proizvodstve [Information technologies in design and production]. 2016, V. 4 (164), pp. 15-23. (in Russian)

33. Tolok A.V., Maksimenko-Sheiko K.V., Sheiko T.I. R-funkcii v analiticheskom proektirovanii s primeneniem sistemy «RANOK» [R-functions in analytical design using the RANOK system]. Vestnik MGTU [Bulletin of MSTU Stankin]. 2010, I. 4, pp. 139-151. (in Russian)

34. Tolok A.V., Maksimenko-Sheiko K.V., Sheiko T.I, Lisin D.A. R-funkcii v komp'yuternom modelirovanii dizajna 3D poverhnosti avtomobilya [R-functions in computer modeling of 3D car surface design]. Prikladnaya informatika [Applied Informatics]. 2012, V. 6, I. 36, pp.78-85. (in Russian)

35. Tolok A.V., Plaksin A.M. Funkcional'no-voksel'naya model' v zadachah intellektualizacii sistem avtomatizirovannogo proektirovaniya [Functional-voxel model in the tasks of intellectualiation of computer-aided design systems]. Vestnik MGTU Stankin [Bulletin of MSUT Stankin]. 2017. V. 2, I. 41. pp. 75-78. (in Russian)

36. Tun E. V., Markin L.V. Postroenie receptornyh geometricheskih modelej ob"ektov slozhnyh tekhnicheskih form [Construction of receptor geometric models of objects of complex technical forms]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 4, pp. 44-56. DOI:https://doi.org/10.12737/2308-4898-2020-44-56. (in Russian)

37. Harakh M.M., Kozlova I.A., Slavin B.M. Konstruirovanie sborochnogo chertezha izdeliya metodom 3D modelirovaniya kak zavershayushchij etap izucheniya inzhenernoj i komp'yuternoj grafiki [Construction of an assembly drawing of a product using 3D modeling as the final stage in the study of engineering and computer graphics] Geometriya i grafika [Geometry and Graphics]. 2014, V. 2, I. 3, pp. 36-40. DOI:https://doi.org/10.12737/5588. (in Russian)

38. Ainsworth M.A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering. V. 142, pp. 1-88.

39. Akin J.E. Finite Element Analysis with Error Estimation. Oxford: Butterworth-Heinemann. 2005, p. 512.

40. Amini S., Harris P. J., Wilton D. T. Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem. Springer-Verlag Berlin Heidelberg. 1992, p. 108.

41. Axelsson O., Baker V.A. Finite Element Solution of Boundary Value Problems: Theory and Computation. Numerical Methods in Engineering. 1989, V. 28, pp. 2709-2710.

Login or Create
* Forgot password?