AIM-E AURORAL IONOSPHERE MODEL ADJUSTMENT FOR THE REGULAR E LAYER
Abstract and keywords
Abstract (English):
The E-Region Auroral Ionosphere Model (AIM-E) was developed to determine the chemical composition and electron density in the auroral zone at E-layer heights (90–150 km). Solar and magnetic activity input parameters for AIM-E are the three-hour Ap index and the daily solar radio flux at a wavelength of 10.7 cm (index F10.7). In this paper, we compare AIM-E calculations of the electron density for the daytime with EUV radiation spectrum specified in two different ways: 1) the EUV spectrum theoretically calculated using the F10.7 index as an input parameter; 2) using TIMED satellite direct measurements of the EUV spectrum. We have corrected the EUVAC EUV radiation model to specify a photoionization source in AIM-E. Calculations of regular E-region critical frequencies show good agreement with the vertical sounding data from Russian high-latitude stations. Results we obtained make it possible to do a quick on-line assessment of the regular E layer, using the daily index F10.7 as an input parameter.

Keywords:
high-latitude ionosphere, auroral oval, E layer, numerical simulation, EUV, photoionization, electron density
Text
Publication text (PDF): Read Download
References

1. Gear C.W. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 1971, 253 p.

2. Girazian Z., Withers P. An empirical model of the extreme ultraviolet solar spectrum as a function of F10.7. J. Geophys. Res.: Space Phys. 2015, vol. 120, iss. 8, rr. 6779-6794. DOI:https://doi.org/10.1002/2015JA021436.

3. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRL-MSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2003, vol. 107, iss. A12, 1468. DOI:https://doi.org/10.1029/2002JA009430.

4. Richards P.G., Torr D.G. An investigation of the consistency of the ionospheric measurements of the photoelectron flux and solar EUV flux. J. Geophys. Res. 1984, vol. 89, iss. A7, rr. 5625-5635. DOI:https://doi.org/10.1029/JA089iA07p05625.

5. Richards P.G., Fennelly J.A., Torr D.G. EUVAC: a solar EUV flux model for aeronomic calculations. J. Geophys. Res. 1994, vol. 99, iss. A5, rr. 8981-8992. DOI:https://doi.org/10.1029/94JA00518.

6. Richards P.G., Woods T.N., Peterson W.K. HEUVAC: A new high resolution solar EUV proxy model. Adv. Space Res. 2006, vol. 37, iss. 2, pp. 315-322. DOI:https://doi.org/10.1016/j.asr.2005.06.031.

7. Tapping K.F. The 10.7 cm solar radio flux (F10.7). Space Weather. 2013, vol. 11, iss. 7, pp. 394-406. DOI:https://doi.org/10.1002/swe.20064.

8. Woodraska D.L., Woods T.N., Eparvier F.G. In-flight Calibration and Performance of the Solar Extreme Ultraviolet Experiment (SEE) aboard the TIMED Satellite. SPIE Proc. 2004, vol. 5660, pp. 36-47. DOI:https://doi.org/10.1117/12.579034.

9. Wright J.W., Khecht R.W., Davies K. Rukovodstvo po vertikal’nomu zondirovaniyu ionosfery [Manual on Vertical Sounding of the Ionosphere]. Moscow, 1957, 81 p. (In Russian).

10. URL: http://lasp.colorado.edu/home/see/data (accessed November 24, 2020).

11. URL: https://omniweb.gsfc.nasa.gov/ow.html (accessed November 24, 2020).

Login or Create
* Forgot password?