employee from 01.01.1975 to 01.01.2021
Irkutsk, Irkutsk region, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Department of Space Science and Engineering, National Central University, Taiwan
Moscow, Russian Federation
Moscow, Russian Federation
Irkutsk, Russian Federation
UDK 53 Физика
UDK 55 Геология. Геологические и геофизические науки
We propose a possible classification of the responses of the magnetosphere to the interaction with diamagnetic structures (DS), which form the basis of the slow solar wind. The main determinants of the classification are the value and orientation of the vertical component Bz of the interplanetary magnetic field (IMF) and the solar wind density N. We have identified three types of magnetospheric responses. Type 1 has two subtypes whose main difference is the presence or absence of auroras on the day side of the magnetosphere. Within an hour before DS arrival, Bz has a positive value (up to 12 nT) or fluctuates about 0 in the range from –1 to +1 nT. For both subtypes, the duration of substorm disturbances approximately coincides with the duration of DS, and their intensity does not exceed AE~500 nT. Type 2 is characterized by the fact that before the contact with DS positive IMF Bz (0–10 nT) is recorded for an hour, and at the interface of DS a rapid (≤2 min) change in the orientation of the IMF vertical component from north to south occurs. For type 3, Bz within an hour before the contact with DS is negative (from –10 to 0 nT). We address the problem of DS energy transfer to the magnetosphere.
slow solar wind, diamagnetic structure, classification of magnetospheric responses, substorm disturbance
1. Akasofu S.-I. The development of the auroral substorm. Planetary Space Sci. 1964, vol. 12, pp. 273.
2. Akasofu S.-I. The solar wind-magnetosphere energy coupling and magnetospheric disturbances. Planetary Space Sci. 1980, vol. 28, iss. 5, pp. 495-509. DOI:https://doi.org/10.1016/0032-0633(80)90031-8.
3. Araki T. A physical model of the geomagnetic sudden commencement. Solar Wind Sources of Magnetospheric ULF Waves. 1994, vol. 81, pp. 183-200. AGU, Washington.
4. Clauer C., Cai X., Welling D., DeJong A., Henderson M. Characterizing the 18 April 2002 storm-time sawtooth events using ground magnetic data. J. Geophys. Res. 2006, vol. 111, A04S90. DOI:https://doi.org/10.1029/2005JA011099.
5. Dmitriev A.V., Suvorova A.V. Large-scale jets in the magnetosheath and plasma penetration across the magnetopause: THEMIS observations. J. Geophys. Res.: Space Phys. 2015, vol. 120, iss. 6. DOI:https://doi.org/10.1002/2014JA020953.
6. Eselevich M.V., Eselevich V.G., Fujiki K. Streamer belt and chains as the main sources of quasi-stationary slow solar wind. Solar Phys. 2007, vol. 240, p. 135.
7. Eselevich V.G. Diamagnetic structures as a basis of quasi-stationary slow solar wind. Solar-Terr. Phys. 2019, vol. 5, no. 3, pp. 29-41. DOI:https://doi.org/10.12737/stp-53201904.
8. Eselevich M.V., Eselevich V.G. Fractal structure of the heliospheric plasma sheet at the Earth’s orbit. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2005, vol. 45, no. 3, pp. 347-358. (In Russian).
9. Huang C.-S., Reeves G. D., Borovsky J. E., Skoug R.M., Pu Z.Y., Le G. Periodic magnetospheric substorms and their relationship with solar wind variations. J. Geophys. Res. 2003, vol. 108, no. A6, p. 1255. DOI:https://doi.org/10.1029/2002JA009704.
10. Janzhura A., Troshichev O., Stauning P. Unified PC indices: Relation to isolated magnetic substorms. J. Geophys. Res. 2007, vol. 112, iss. A9, citeID A09207. DOI:https://doi.org/10.1029/2006JA012132.
11. Karlsson T., Kullen A., Liljeblad E., et al. On the origin of magnetosheath plasmoids and their relation to magnetosheath jets. J. Geophys. Res.: Space Phys. 2015, vol. 120, iss. 9, pp. 7390-7403. DOI:https://doi.org/10.1002/2015JA021487.
12. Keika K.R., Nakamura W., Baumjohann W., Angelopoulos V. Substorm expansion triggered by a sudden impulse front propagating from the dayside magnetopause. J. Geophys. Res. Atmos. 2009, vol. 114, no. 6. DOI:https://doi.org/10.1029/2008JA013445.
13. Lundin R., Sauvaud J.-A., Rème H. Evidence for impulsive solar wind plasma penetration through the dayside magnetopause. Ann. Geophys. 2003, vol. 21, pp. 457-472.
14. Lyons L.R., Liu S., Ruohoniemi J.M., Solovyev S.I., Samson J.C. Observations of dayside convection reduction leading to substorm onset. J. Geophys. Res.: Space Phys. 2003, vol. 108, iss. A3, p. 1119. DOI:https://doi.org/10.1029/2002JA009670.
15. Lyons L.R., Lee D.-Y., Wang C.-P., Mende S.B. Global auroral responses to abrupt solar changes: Dynamic pressure, substorms and null events. J. Geophys. Res.: Space Phys. 2005, vol. 110, iss. A08208. DOI:https://doi.org/10.1029/2005JA011089.
16. McPherron R.L., Weygand J.M., Tung-Shin Hsu. Response of the Earth's magnetosphere to changes in the solar wind. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, no. 2, pp. 303-315. DOI:https://doi.org/10.1016/j.jastp.2007.08.040.
17. Nishida A. Geomagnitnyi diagnoz magnitosfery [Geomagnetic Diagnosis of the Magnetosphere]. Moscow, Mir, 1980, 222 p. (In Russian).
18. O’Brien T.P., McPherron R.L. Seasonal and diurnal variation of Dst dynamics. J. Geophys. Res. 2002, vol. 107, no. A11. DOI:https://doi.org/10.1029/2002JA009435.
19. Parkhomov V.A., Borodkova N.L., Dmitriev A.V., Klimov P.M., Rakhmatulin R.A. The role of solar wind pressure jumps in processes of initiation of magnetospheric storm and its controlling. Solar-Terr. Phys. 2011, vol. 18, no. 3, pp. 109-122. (In Russian).
20. Parkhomov V.A., Riazantseva M.O., Zastenker G.N. Local Amplification of Auroral Electrojet as a Response to a Sharp Solar Wind Pressure Pulse. Planetary Space Sci. 2005, vol. 53, iss. 1-3, pp. 265-274.
21. Parkhomov V.A., Borodkova N.L., Eselevich V.G., Eselevich M.V., Dmitriev A.V., Chilikin V.E. Solar wind diamagnetic structures as a source of substorm-like disturb-ances. J. Atmos. Solar-Terr. Phys. 2018, vol. 181, part A, pp. 55-67. DOI:https://doi.org/10.1016/j.jastp.2018.10.010.
22. Parkhomov V.A., Eselevich V.G., Eselevich M.V., Dmitriev A.V., Vedernikova T.I. Diamagnetic plasmoids as part of diamagnetic structures of the slow solar wind and their impact on Earth’s magnetosphere. Solar-Terr. Phys. 2019, vol. 5, no 4, pp. 34-45. DOI:https://doi.org/10.12737/stp-54201905.
23. Spann J.F., Brittnacher M., Elsen R., Germany G.A., Parks G.K. Initial response and complex polar cap structures of the aurora in response to the January 10, 1997 magnetic cloud. Geophys. Res. Lett. 1998, vol. 25, no.14, pp. 2577-2580.
24. Tagirov V.R., Arinin V.A., Meng C.I., et al. Comparison of two substorm onsets on the basis of coordinated ground-satellite observations. International Conference on Substorms-4. Japan, March 9-13, 1998. P. 339-342. Terra Scientific Publishing Company, Tokyo, Japan, 1998.
25. Troshichev O.A., Sormakov D.A. PC index as a proxy of the solar wind energy that entered into the magnetosphere. Problemy Arktiki i Antarktiki [Arctic and Antarctic Res.]. 2019, vol. 65, no 3. DOI:https://doi.org/10.30758/0555-2648-2019-65-3-275-299.
26. Troshichev O., Janzhura A., Stauning P. Unified PCN and PCS indices: Method of calculation, physical sense and de-pendence on the IMF azimuthal and northward components. J. Geophys. Res. 2006, vol. 111, no. A05208. DOI: 2010.1029/ 202005JA011402.
27. Troshichev O.A., Stauning P., Liou K., Reeves G. Saw-tooth substorms: Inconsistency of repetitive bay-like magnetic disturbances with behavior of aurora. Adv. Space Res. 2011, vol. 47, pp. 702-709.
28. Vorobjev V.G., Antonova E.E., Yagodkina O.I. How the intensity of isolated substorms is controlled by the solar wind parameters. Earth, Planets and Space. 2018a, vol. 70, p. 148. DOI:https://doi.org/10.1186/s40623-018-0922-5.
29. Vorobjev V.G., Antonova E.E., Yagodkina O.I.,Zverev V.L. Influence of solar wind plasma parameters on the intensity of isolated magnetospheric substorms. Geomagnetism and Aeronomy. 2018b, vol. 58, no. 3, pp. 295-306. DOI:https://doi.org/10.1134/S00 16793218030155.
30. Yakhnin A.G., Titova E.E., Demekhov A.G., Yakhnina A.T., Popova T.A., Lyubchich A.A., et al. Simultaneous observations of electromagnetic ion cyclotron (EMIC) and ELF/ULF waves and precipitation of energetic particles during multiple compressions of the magnetosphere. Geomagneizm i aeronomiya [Geomagneism and Aeronomy]. 2019, vol. 59, no 6, pp. 714-726. DOI:https://doi.org/10.1134/S0016794019060142. (In Russian).
31. Zhou X., Tsurutani B.T. Rapid intensification and propagation of the dayside aurora: Large scale interplanetary pressure pulses (fast shocks). Geophys. Res. Lett. 1999, vol. 26, iss. 8, pp. 1097-1100. DOI: 0.1029/1999GL900173.
32. URL: https://cdaweb.sci.gsfc.nasa.gov/cdaweb/istp_public (accessed May 20, 2020).
33. URL: http://pgia.ru/content/site/pages/PGI-DATA/List-substorms_rus.pdf (accessed May 20, 2020).
34. URL: http:// cdaweb.gsfc.nasa.gov/cgi-bin/eval2.cgi (accessed May 20, 2020).
35. URL: http://space-weather.ru/ru/node/32 (accessed May 20, 2020).
36. URL: http://www.obsebre.es/en/rapid (accessed May 20, 2020).
37. URL: http://wso.stanford.edu (accessed May 20, 2020).