Irkutsk, Russian Federation
Ulaanbaatar, Mongolia
The layering of the ionosphere leads to the formation of resonators and waveguides of various kinds. One of the most well-known is the ionospheric Alfvén resonator (IAR) whose radiation can be observed both on Earth’s surface and in space in the form of a fan-shaped set of discrete spectral bands (DSB), the frequency of which changes smoothly during the day. The bands are formed by Alfvén waves trapped between the lower part of the ionosphere and the altitude profile bending of Alfvén velocity in the transition region between the ionosphere and the magnetosphere. Thus, IAR is one of the important mechanisms of the ionosphere-magnetosphere interaction. The emission frequency lies in the range from tenths of hertz to about 8 Hz — the frequency of the first harmonic of the Schumann resonance. The review describes in detail the morphology of the phenomenon. It is emphasized that the IAR emission is a permanent phenomenon; the probability of observing it is primarily determined by the sensitivity of the equipment and the absence of interference of natural and artificial origin. The daily duration of the DSB observation almost completely depends on the illumination conditions of the lower ionosphere: the bands are clearly visible only when the D layer is shaded. Numerous theoretical IAR models have been systematized. All of them are based on the analysis of the excitation and propagation of Alfvén waves in inhomogeneous ionospheric plasma and differ mainly in sources of oscillation generation and methods of accounting for various factors such as interaction of wave modes, dipole geometry of the magnetic field, frequency dispersion of waves. Predicted by all models of the cavity and repeatedly confirmed experimentally, the close relationship between DSB frequency variations and critical frequency foF2 variations serves as the basis for searching ways of determining in real time the electron density of the ionosphere from IAR emission frequency measurements. It is also possible to estimate the profile of the ion composition over the ionosphere from the data on the IAR emission frequency structure. The review also focuses on other results from a wide range of IAR studies, specifically on the results that revealed the influence of the interplanetary magnetic field orien tation on oscillations of the resonator, and on the facts of the influence of seismic disturbances on IAR.
spectral bands, ultra low frequency emission, resonator, standing Alfvén waves, harmonic structure, wave modes, electron density, diagnostics
1. Baru N., Koloskov A., Yampolsky Y., Rakhmatulin R. Multipoint observations of ionospheric Alfvén resonance. Adv. Astron. Space Phys. 2016, vol. 6, no. 1, pp. 45-49. DOI:https://doi.org/10.17721/2227-1481.6.45-49.
2. Belyaev P.P., Polyakov S.V., Rapoport V.O., Trakhtengerts V.Yu. Finding resonance structure spectrum of the atmospheric electromagnetic noise background within short-period geomagnetic pulsation range. Doklady AN SSSR [Reports of AS USSR]. 1987, vol. 297, pp. 840-843. (In Russian).
3. Belyaev P.P., Polyakov S.V., Rapoport V.O., Trakhtengerts V.Y. Theory for the formation of resonance structure in the spectrum of atmospheric electromagnetic background noise in the range of short-period geomagnetic pulsations. Radiophys. Quantum Electron. 1989, vol. 32, no. 7, pp. 594-601.
4. Belyaev P.P., Polyakov S.V., Rapoport V.O., Trakhtengerts V.Yu. The ionospheric Alfvén resonator. J Atmos. Terr. Phys. 1990, vol. 52, no. 9, pp. 781-788.
5. Belyaev P.P., Polyakov S.V., Ermakova E.N., Isaev S.V. Experimental studies of the ionospheric Alfvén resonator using observations of the electromagnetic noise background over the solar cycle of 1985 to 1995. Radiophysics and Quantum Electronics. 1997, vol. 40, no. 10, pp. 1305-1319.
6. Belyaev P.P., Bösinger T., Isaev S.V., Kangas J. First evidence at high latitudes for the ionospheric Alfvén resonator. J. Geophys. Res. 1999, vol. 104, pp. 4305-4317. DOI:https://doi.org/10.1029/1998JA900062.
7. Bösinger T., Haldoupis C., Belyaev P.P., Yakunin M.N., Semenova N.V., Demekhov A.D., Angelopoulos V. Special properties of the ionospheric Alfvén resonator observed at a low-latitude station (L=1.3). J. Geophys. Res. 2002, vol. 107, A10, pp. 1281-1289. DOI:https://doi.org/10.1029/2001JA005076.
8. Bösinger T., Demekhov A.G., Trakhtengerts V.Y. Fine structure in ionospheric Alfvèn resonator spectra observed at low latitude (L=1.3). Geophys. Res. Lett. 2004, vol. 31, L18802. DOI:https://doi.org/10.1029/2004GL020777.
9. Chaston C.C., Bonnell J.W., Carlson C.W., Berthomier M., Peticolas L.M., Roth I., et al. Electron acceleration in the ionospheric Alfvén resonator. J. Geophys. Res. 2002, vol. 107, no. A11, p. 1413. DOI:https://doi.org/10.1029/2002JA009272.
10. Demekhov A.G., Belyaev P.P., Isaev S.V., Manninen J., Turunen T., Kangas J. Modelling the diurnal evolution of the resonance spectral structure of the atmospheric noise background in the Pc1 frequency range. J. Atmos. Solar-Terr. Phys. 2000, vol. 62, pp. 257-265. DOI:https://doi.org/10.1016/S1364-6826(99)00119-4.
11. Dovbnya B.V., Guglielmi A.V., Potapov A.S., Klain B.I. On the existence of an over-iospheric Alfvén resonator. Solnechno-zemnaya fizika [Solar-Terrestrial Physics], 2013a, iss. 22, pp. 12-15. (In Russian).
12. Dovbnya B.V., Guglielmi A.V., Potapov A.S., Rakhmatulin R.A. An additional resonator for ultra-low frequency waves. Geofizicheskie issledovaniya [Geophys. Res.]. 2013b, vol. 14, no. 2, pp. 49-58 (In Russian).
13. Dovbnya B.V., Klain B.I., Kurazhkovskaya N.A. Dynamics of ionospheric Alfvén resonances from the end of cycle 21 through cycle 24 of solar activity. Geomagnetism and Aeronomy, 2019a, vol. 59, no. 1, pp. 39-49. DOI:https://doi.org/10.1134/S0016794019010061.
14. Dovbnya B.V., Klain B.I., Kurazhkovskaya N.A. Influence of substorm activity on the formation of ultra low frequency noise emissions in the frequency range of 0-7 Hz. Geomagnetism and Aeronomy, 2019b, vol. 59, no. 3, pp. 304-311. DOI:https://doi.org/10.1134/S0016794019030076.
15. Dudkin D., Pilipenko V., Korepanov V., Klimov S., Holzworth R. Electric field signatures of the IAR and Schumann resonance in the upper ionosphere detected by Chibis-M microsatellite. J. Atmos. Solar-Terr. Phys. 2014, vol. 117, pp. 81-87. DOI:https://doi.org/10.1016/j.jastp.2014.05.013.
16. Ermakova E.N., Kotik D.S., Polyakov S.V. Studying specific features of the resonance structure of the background noise spectrum in the frequency range 1-10 Hz with allowance for the slope of the Earth's magnetic field. Radiophysics and Quantum Electronics. 2008, vol. 51, no. 7, pp. 575-584.
17. Ermakova E.N., Polyakov S.V., Semenova N.V. Study of the fine structure in the spectrum of low-frequency background noise at mid-latitudes. Physics of Auroral Phenomena. 2011, vol. 34, no.2, pp. 147-150.
18. Fedorov E., Mazur N., Pilipenko V., Engebretson M. Interaction of magnetospheric Alfvén waves with the ionosphere in the Pc1 frequency band. J. Geophys. Res.: Space Phys. 2016a, vol. 121, no. 1, pp. 321-337. DOI:https://doi.org/10.1002/2015JA021020.
19. Fedorov E., Mazur N., Pilipenko V., Baddeley L. Modeling the high-latitude ground response to the excitation of the ionospheric MHD modes by atmospheric electric discharge. J. Geophys. Res.: Space Phys. 2016b, vol. 121, iss. 11, pp. 11,282-11,301. DOI:https://doi.org/10.1002/2016JA023354.
20. Fedorov E., Mazur N., Pilipenko V., Ermakova E. Modeling diurnal variations of the IAR parameters. Acta Geodaetica et Geophysica. 2016c, vol. 51, no. 4, pp. 597-617. DOI:https://doi.org/10.1007/s40328-015-0158-9.
21. Gokhberg M.B. A new type of electromagnetic emission in the range of short-period geomagnetic oscillations. Doklady Earth Sciences. 1998, vol. 359A, vol. 3. pp. 423-424.
22. Grimalsky V., Kotsarenko A., Pulinets S., Koshevaya S., Perez-Enriquez R. On the modulation of intensity of Alfvén resonances before earthquakes: Observations and model. J. Atmos. Solar-Terr. Phys. 2010, vol. 72, no. 1, pp. 1-6. DOI:https://doi.org/10.1016/j.jastp.2009.09.017.
23. Guglielmi A.V., Potapov A.S. Influence of the interplanetary magnetic field on ULF oscillations of the ionospheric resonator. Cosmic Res. 2017, vol. 55, no. 4, pp. 248-252. DOI:https://doi.org/10.1134/S0010952517030042.
24. Guglielmi A.V., Potapov A.S. Frequency-modulated ULF waves in near-Earth space. Physics-Uspekhi. 2021, vol. 64, no. 5. DOI:https://doi.org/10.3367/UFNe.2020.06.038777.
25. Guglielmi A., Zotov O. The human impact on the Pc1 wave activity. J. Atmos. Solar-Terr. Phys. 2007, vol. 69, pp. 1753-1758.
26. Guglielmi A., Potapov A., Tsegmed B., Hayakawa M., Dovbnya B. On the earthquake effects in the regime of ionospheric Alfven resonances. Physics and Chemistry of the Earth. 2006, vol. 31, pp. 469-472.
27. Guglielmi A.V., Dovbnya B.V., Potapov A.S., Hayakawa M. Effect of hour marks in activity of Pc1 electromagnetic oscillations as evidence of human impact on the ionosphere and magnetosphere. Solnechno-zemnaya fizika [Solar-Terr. Phys.]. 2011, iss. 19, pp. 88-92. (In Russian).
28. Guglielmi A.V., Klain B.I., Potapov A.S. Discrete spectrum of ULF oscillations of the ionosphere. 2021. arXiv: 2105.01871 [physics.geo-ph].
29. Hasegawa A., Chen L. Theory of magnetic pulsations. Space Sci. Rev. 1974, vol. 16, no. 3, pp. 347-359. DOI:https://doi.org/10.1007/BF00171563.
30. Hebden S.R., Robinson T.R., Wright D.M., Yeoman T., Raita T., Bösinger T. A quantitative analysis of the diurnal evolution of Ionospheric Alfvén resonator magnetic resonance features and calculation of changing IAR parameters. Ann. Geophys. 2005, vol. 23, pp. 1711-1721. DOI:https://doi.org/10.5194/angeo-23-1711-2005.
31. Ivanov N.V., Tereshchenko E.D., Tereshchenko P.E., Kopytenko Y.A. Features of resonance structures in natural electromagnetic noise spectra in the region of the main ionospheric trough. Geomagnetism and Aeronomy. 2017, vol. 57, no. 6, pp. 752-760. DOI:https://doi.org/10.1134/S0016793217050097.
32. Koloskov A.V., Baru N.A. F-layer critical frequency determination from ionospheric Alfven resonance observations. Ukrainskii antarkticheskii zhurnal [Ukranian Antarctic J.]. 2011-2012, no. 10-11, pp. 114-120 (In Russian).
33. Lysak R.L. Feedback instability of the ionospheric resonant cavity. J. Geophys. Res. 1991, vol. 96, no. A2, pp. 1553-1568. DOI:https://doi.org/10.1029/90JA02154.
34. Lysak R.L. Magnetosphere-ionosphere coupling by Alfvén waves at midlatitudes. J. Geophys. Res. 2004, vol. 109, A07201. DOI:https://doi.org/10.1029/2004JA010454.
35. Lysak R.L., Yoshikawa A. Resonant cavities and waveguides in the ionosphere and atmosphere. Magnetospheric ULF Waves: Synthesis and New Directions. Geophys. Monograph Ser. 2006, vol. 169, pp. 289-306. Washington: American Geophysical Union Publ., DC, USA, 2006.
36. Lysak R.L., Waters C.L., Sciffer M.D. Modeling of the ionospheric Alfvén resonator in dipolar geometry. J. Geophys. Res.: Space Phys. 2013, vol. 118, no. 4, pp. 1514-1528. DOI:https://doi.org/10.1002/jgra.50090.
37. Molchanov O.A., Schekotov A.Yu., Fedorov E., Hayakawa M. Ionospheric Alfvén resonance at middle latitudes: Results of observations at Kamchatka. Physics and Chemistry of the Earth. 2004, vol. 29, pp. 649-655. DOI:https://doi.org/10.1016/j.pce.2003.09.022.
38. Nosé M., Uyeshima M., Kawai J., Hase H. Ionospheric Alfvén resonator observed at low-latitude ground station, Muroto. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 7240-7255. DOI:https://doi.org/10.1002/2017JA024204.
39. Parent A., Mann I.R., Rae I.J. Effects of substorm dynamics on magnetic signatures of the ionospheric Alfvén resonator. J. Geophys. Res. 2010, vol. 115, iss. A2, CiteID A02312. DOI:https://doi.org/10.1029/2009JA014673.
40. Pilipenko V.A. Ultra-low-frequency waves in space and on Earth. In: Ocherki geofizicheskikh issledovanii: k 75-letiyu Ob’edinennogo instituta fiziki Zemli im. O.Yu. Shmidta [Essays on Geophysical Research: to the 75th anniversary of the Schmidt Joint Institute of Physics of the Earth], Moscow: OIFZ RAN, 2003, pp. 216-228. (In Russian).
41. Pilipenko V., Dudkin D., Fedorov E., Korepanov V., Klimov S. IAR signatures in the ionosphere: Modeling and observations at the Chibis-M microsatellite. J. Atmos. Solar-Terr. Phys. 2017, vol. 154, pp. 217-225. DOI:https://doi.org/10.1016/j.jastp.2015.12.012.
42. Pokhotelov O.A., Pokhotelov D., Streltsov A., Khruschev V., Parrot M. Dispersive ionospheric Alfvén resonator. J. Geophys. Res. 2000, vol. 105, no. A4, pp. 7737-7746. DOI:https://doi.org/10.1029/1999JA900480.
43. Pokhotelov O.A., Khruschev V., Parrot S., Senchenkov S., Pavlenko V.P. Ionospheric Alfvén resonator revisited: Feedback instability. J. Geophys. Res. 2001, vol. 106, no. A11, pp. 25813-258234. DOI:https://doi.org/10.1029/2000JA000450.
44. Pokhotelov O.A., Feygin F.Z., Khabazin Yu, Khruschev V.V., Bösinger T., Kangas J., Prikner K. Observations of IAR spectral resonance at a large triangle of geophysical observatories.. Proc. XXVI Annual Seminar “Physics of Auroral Phenomena”. Apatity: Kola, Science Center, RAS, 2003. pp. 123-126.
45. Polyakov S.V. On the properties of ionospheric Alfvén resonator. Simpozium KAPG po solnechno-zemnoi fizike (KAPG Simpozium on Solar-Terrestrial Physics), Book of Abstracts. Moscow, Nauka, 1976, Part 3, pp. 72-73.
46. Polyakov S.V., Rapoport V.O. Ionospheric Alfvén resonator. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1981, vol. 21, no. 5, pp. 816-822. (In Russian).
47. Polyushkina T.N., Dovbnya B.V., Potapov A.S., Tsegmed B., Rakhmatulin R.A. Frequency structure of spectral bands of the ionospheric Alfvén resonator and parameters of the ionosphere, Geofizicheskie issledovaniya [Geophysical Res.]. 2015, vol. 16, no. 2, pp. 39-57. (In Russian).
48. Potapov A.S., Polyushkina T.N. Estimation of the ionosphere critical frequency without radio sounding. IEEE Trans. Geoscience and Remote Sensing. 2020a, vol. 58, no. 7, pp. 5058-5065. DOI:https://doi.org/10.1109/TGRS.2020.2972011.
49. Potapov A.S., Polyushkina T.N. Response of IAR frequency scale to solar and geomagnetic activity in solar cycle 24. AIMS Geosciences. 2020b, vol. 6, no. 4, pp. 545-560. DOI:https://doi.org/10.3934/geosci.2020031.
50. Potapov A.S., Dovbnya B.V., Tsegmed B. Earthquake impact on ionospheric Alfvén resonances. Izvestiya. Physics of the Solid Earth. 2008, no. 4, pp. 93-96. (In Russian).
51. Potapov A.S., Polyushkina T.N., Dovbnya B.V., Tsegmed B., Rakhmatulin R.A. Emissions of ionospheric Alfvén resonator and ionospheric conditions. J. Atmos. Solar Terr. Phys. 2014, vol. 119, pp. 91-101. DOI:https://doi.org/10.1016/j.jastp.2014.07.001.
52. Potapov A.S., Polyushkina T.N., Oinats A.V., Pashinin A.Yu., Raita T., Tsegmed B. First attempt to estimate the ion content over the ionosphere using data from the IAR frequency structure. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space]. 2016, vol. 13, no. 2, pp. 192-202. DOI:https://doi.org/10.21046/2070-7401-2016-13-2-192-202. (In Russian).
53. Potapov A.S., Polyushkina T.N., Tsegmed B., Oinats A.V., Pashinin A.Yu., Edemskiy I.K., et al. Considering the potential of IAR emissions for ionospheric sounding. J. Atmos. Solar-Terr. Phys. 2017, vol. 164, pp. 229-234. DOI:https://doi.org/10.1016/j.jastp.2017.08.026.
54. Potapov A.S., Guglielmi A.V., Klain B.I. Discrete spectrum of ULF oscillations of the ionosphere. IEEE Trans. Geoscience and Remote Sensing. 2021. DOI:https://doi.org/10.1109/TGRS.2021.3092738.
55. Prikner K., Mursula K., Kangas J., Kerttula R., Feygin F.Z. An effect of the ionospheric Alfvén resonator on multiband Pc1 pulsations. Ann. Geophys. 2004, vol. 22, pp. 643-651. DOI:https://doi.org/10.5194/angeo-22-643-2004.
56. Samadani R., Fraser-Smith A.C., Villard Jr. O.G. Possible change in natural Pc1 pulsation activity caused by BART. J. Geophys. Res. 1981, vol. 86, pp. 9211-9214. DOI:https://doi.org/10.1029/JA086iA11p09211.
57. Schekotov A., Pilipenko V., Shiokawa K., Fedorov E. ULF impulsive magnetic response at mid-latitudes to lightning activity. Earth, Planets and Space. 2011, vol. 63, pp. 119-128. DOI:https://doi.org/10.5047/eps.2010.12.009.
58. Sciffer M.D., Waters C.L. Propagation of ULF waves through the ionosphere: Analytic solutions for oblique magnetic fields. J. Geophys. Res. 2002, vol. 107, no. A10, p. 1297. DOI:https://doi.org/10.1029/2001JA000184.
59. Sciffer M.D., Waters C.L., Menk F.W. A numerical model to investigate the polarisation azimuth of ULF waves through an ionosphere with oblique magnetic fields. Ann. Geophys. 2005, vol. 23, p. 3457.
60. Semenova N.V., Yahnin A.G. Substorm effect on ground observations of signatures of the ionospheric Alfvén resonator. Proc. International Conference on Substorms-8, Univ. of Calgary, Banff, Canada, 2005.
61. Semenova N.V., Yahnin A.G. Sudden change in the resonance structure in the electromagnetic noise spectrum in the 0.1-10 Hz range during a substorm. Geomagnetism and Aeronomy. 2014, vol. 54, no. 3, pp. 316-322. DOI:https://doi.org/10.1134/S0016793214030153.
62. Semenova N.V., Yahnin A.G., Vasil’ev A.N., Amm O. Specific features of resonance structures in spectra of ULF electromagnetic noise at high latitudes (Barentsburg Observatory). Geomagnetism and Aeronomy. 2008, vol. 48, pp. 36-44. DOI:https://doi.org/10.1007/s11478-008-1005-8.
63. Simões F., Klenzing J., Ivanov S., Pfaff R., Freudenreich H., Bilitza D., et al. Detection of ionospheric Alfvén resonator signatures in the equatorial ionosphere. J. Geophys. Res. 2012, vol. 117, A11305. DOI:https://doi.org/10.1029/2012JA017709.
64. Southwood D.J. Some features of field line resonances in the magnetosphere. Planet. Space Sci. 1974, vol. 22, no. 3, pp. 483-491. DOI:https://doi.org/10.1016/0032-0633(74)90078-6.
65. Stanislawska I., Juchnikowski G., Gulyaeva T.L. Correlation distances based on ionospheric and geomagnetic catalogues. Proc. STP-V Workshop. Hitachi, Japan, 1997, pp. 387-390.
66. Surkov V.V., Pilipenko V.A. Spectral signatures of the ionospheric Alfvén resonator to be observed by low-Earth orbit satellite. J. Geophys.Res.: Space Phys. 2016, vol. 121, pp. 2783-2794. DOI:https://doi.org/10.1002/2015JA021912.
67. Surkov V.V., Pokhotelov O.A., Parrot M., Fedorov E.N., Hayakawa M. Excitation of the ionospheric resonance cavity by neutral winds at middle latitudes. Ann. Geophys. 2004, vol. 22, pp. 2877-2889. DOI:https://doi.org/10.5194/angeo-22-2877-2004.
68. Surkov V.V., Hayakawa M., Schekotov A.Y., Fedorov E.N., Molchanov O.A., Ionospheric Alfvén resonator excitation due to nearby thunderstorms. J. Geophys. Res. 2006, vol. 111, iss. A1, CiteID A01303. DOI:https://doi.org/10.1029/2005JA011320.
69. Trakhtengertz V.Yu., Feldstein A.Ya. Turbulent regime of magnetospheric convection. Geomagnetism and Aeronomy. 1987, vol. 27, pp. 221-228.
70. Trakhtengerts V.Yu., Feldstein A.Ya. Turbulent Alfvén boundary layer in the polar ionosphere. 1. Excitation conditions and energetic. J. Geophys. Res. 1991, vol. 96, no. A11, pp. 19363-19374.
71. Yahnin A.G., Semenova N.V., Ostapenko A.A., Kangas J., Manninen J., Turunen T. Morphology of the spectral resonance structure of the electromagnetic background noise in the range of 0.1-4 Hz at L=5.2. Ann. Geophys. 2003, vol. 21, pp. 779-786. DOI:https://doi.org/10.5194/angeo-21-779-2003.
72. Zhao Z.Y., Ni B.B. Signatures of the ionospheric Alfvén resonator from AUREOL-3 ULF/ELF fluctuation measurements. J. Atmos. Solar-Terr. Phys. 2006, vol. 68, pp. 191-201. DOI:https://doi.org/10.1016/j.jastp.2005.10.009.
73. Zotov O.D., Guglielmi A.V. Diversity of geophysical manifestations of the ponderomotive forces. Proc. The 8th International Conference “Problems of Geocosmo”, St. Petersburg, Petrodvorets, 20-24 Sept. 2010, pp. 294-299.
74. URL: https://omniweb.sci.gsfc.nasa.gov/vitmo/cgm.html (accessed April 19, 2021).
75. URL: https://omniweb.gsfc.nasa.gov/ow.html (accessed April 19, 2021).
76. URL: http://ckp-rf.ru/ckp/3056 (accessed April 19, 2021).