Irkutsk, Irkutsk region, Russian Federation
Irkutsk, Irkutsk region, Russian Federation
Geophysical Center of the Russian Academy of Sciences
Irkutsk, Russian Federation
from 01.01.2013 to 01.01.2021
Irkutsk, Irkutsk region, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Magnetohydrodynamic (MHD) waves play a crucial role in the plasma processes of stellar atmospheres and planetary magnetospheres. Wave phenomena in both media are known to have similarities and unique traits typical of each system. MHD waves and related phenomena in magnetospheric and solar physics are studied largely independently of each other, despite the similarity in properties of these media and the common physical foundations of wave generation and propagation. A unified approach to studying MHD waves in the Sun and Earth's magnetosphere opens up prospects for further progress in these two fields. The review examines the current state of research into MHD waves in the Sun’s atmosphere and Earth's magnetosphere. It outlines the main features of the wave propagation media: their structure, scales, and typical parameters. We describe the main theoretical models applied to wave behavior studies; discuss their advantages and limitations; compare characteristics of MHD waves in the Sun’s atmosphere and Earth’s magnetosphere; and review observation methods and tools to obtain information on waves in various media.
magnetohydrodynamics, MHD waves, Alfvén waves, fast magnetosonic waves, slow magnetosonic waves, magnetosphere, ULF waves, chromosphere, solar corona, active regions, solar activity
1. Akhiezer A.I., Akhiezer I.A., Polovin R.V., Sitenko A.G., Stepanov K.N. Plasma electrodynamics. Moscow, Nauka Publ., 1974, 720 p. (In Russian).
2. Anderson B.J., Engebretson M.J., Rounds S.P., Zanetti L.J., Potemra T.A. A statistical study of Pc 3-5 pulsations observed by the AMPTE/CCE Magnetic Fields Experiment, 1. Occurrence distributions. J. Geophys. Res. 1990, vol. 95, no. A7, pp. 10495-10523. DOI:https://doi.org/10.1029/JA095iA07p10495.
3. Anderson B.J., Erlandson R.E., Zanetti L.J. A statistical study of Pc 1-2 magnetic pulsations in the equatorial magnetosphere: 2. Wave properties. J. Geophys. Res. 1992, vol. 97, no. A3, pp. 3089-3101. DOI:https://doi.org/10.1029/91JA02697.
4. Altschuler M.D., Trotter D.E., Orrall F.Q. Coronal holes. Solar Phys. 1972, vol. 26, iss 2, pp. 354-365. DOI: 10.1007/ BF00165276.
5. Altyntsev A.T., Lesovoi S.V., Globa M.V., Gubin A.V., Kochanov A.A., Grechnev V.V. Multiwave Siberian Radioheliograph. Solar-Terr. Phys. 2020, vol. 6, iss. 2, pp. 30-40. DOI:https://doi.org/10.12737/stp-62202003.
6. Anfinogentov S.A., Nakariakov V.M., Nisticò G. Decayless low-amplitude kink oscillations: A common phenomenon in the solar corona? Astron. Astrophys. 2015, vol. 583, A136. DOI:https://doi.org/10.1051/0004-6361/201526195.
7. Anfinogentov S.A., Stupishin A.G., Mysh’yakov I.I., Fleishman G.D. Record-breaking coronal magnetic field in solar active region 12673. Astrophys. J. 2019, vol. 880, iss. 2, p. L29.
8. Angelopoulos V. The THEMIS Mission. Space Sci. Rev. 2008, vol. 141, pp. 5-34. DOI:https://doi.org/10.1007/s11214-008-9336-1.
9. Antonsen Jr. T.M., Lane B. Kinetic equations for low frequency instabilities in inhomogeneous plasmas. Physics of Fluids. 1980, vol. 23, iss. 6, pp. 1205-1214. DOI:https://doi.org/10.1063/1.863121.
10. Aschwanden M.J. The differential emission measure distribution in the multiloop corona. Astrophys. J. 2002, vol. 580, no. 1, rr. L79-L83. DOI:https://doi.org/10.1086/345469.
11. Aschwanden M.J., Nakariakov V.M., Melnikov V.F. Magnetohydrodynamic Sausage-Mode Oscillations in Coronal Loops. Astrophys. J. 2004, vol. 600, iss. 1, rr. 458-463. DOI: 10.1086/ 379789.
12. Baddeley L.J., Lorentzen D.A., Partamies N., Denig M., Pilipenko V.A., Oksavik K., et al. Equatorward propagating auroral arcs driven by ULF wave activity: Multipoint ground- and space-based observations in the dusk sector auroral oval. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 5591-5605. DOI:https://doi.org/10.1002/2016JA023427.
13. Balthasar H. The oscillatory behaviour of solar faculae. Solar Phys. 1990, vol. 127, pp. 289-292. DOI:https://doi.org/10.1007/BF00152168.
14. Banerjee D., Pérez-Suárez D., Doyle J.G. Broadening of SI VIII lines observed in the solar polar coronal holes. Astron. Astrophys. 1998, vol. 339, pp. 208-214.
15. Banerjee D., Teriaca L., Doyle J.G., Wilhelm K. Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode. Astron. Astrophys. 2009, vol. 501, iss. 3, pp. L15-L18. DOI:https://doi.org/10.1051/0004-6361/200912242.
16. Baranov A.V., Baranova A.V., Lazareva L.F. Peculiarities of the cross-over effect in sunspot penumbrae. Observation results. Solar Activity and Its Impact on Earth. 2008, vol. 11, pp. 13-23. (In Russian).
17. Baumjohann W., Junginger H., Haerendel G., Bauer O.H. Resonant Alfvén waves excited by a sudden impulse. J. Geophys. Res. 1984, vol. 89, iss. A5, pp. 2765-2769. DOI:https://doi.org/10.1029/JA089 iA05p02765.
18. Bemporad A., Abbo L. Spectroscopic signature of Alfvén waves damping in a polar coronal hole up to 0.4 solar radii. Astrophys. J., 2012, vol. 751, iss. 2, A110. DOI:https://doi.org/10.1088/0004-637X/751/2/110.
19. Berngardt O.I., Kutelev K.A., Kurkin V.I., et al. Bistatic sounding of high-latitude ionospheric irregularities using a decameter EKB radar and an UTR-2 radio telescope: first results. Radiophysics and Quantum Electronics. 2015, Vol. 58, no. 6. P. 390-408. DOI:https://doi.org/10.1007/s11141-015-9614-1.
20. Bogdan T.J. Sunspot oscillations: A review. Solar Phys. 2000, vol. 192, pp. 373-394. DOI:https://doi.org/10.1023/A:1005225214520.
21. Borovsky J.E. Auroral arc thicknesses as predicted by various theories. J. Geophys. Res. 1993, vol. 98, iss. A4, pp. 6101-6138. DOI:https://doi.org/10.1029/92JA02242.
22. Braginsky S.I. Transport phenomena in plasma. Plasma Phys. 1963, vol. 2. Ed. Leontovich M.A. Moscow, Gosatomizdat, 1963, pp. 183-272. (In Russian).
23. Branduardi-Raymont G., Wang C., Escoubet C.P., Sembay S., Donovan E., Dai L., et al. Imaging solar-terrestrial interactions on the global scale: The SMILE mission. EGU General Assembly, 19-30 Apr. 2021. 2021, EGU21-3230. DOI:https://doi.org/10.5194/egusphere-egu21-3230.
24. Brueckner G.E., Bartoe J.-D.F. The fine structure of the solar atmosphere in the far ultraviolet. Solar Phys. 1974, vol. 38, iss. 1, pp. 133-156. DOI:https://doi.org/10.1007/BF00161831.
25. Burch J.L. IMAGE mission overview. Space Sci. Rev. 2000, vol. 91, pp. 1-14. DOI:https://doi.org/10.1023/A:1005245323115.
26. Burch J.L., Moore T.E., Torbert R.B., Giles B.L. Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 2016, vol. 199, pp. 5-21. DOI:https://doi.org/10.1007/s11214-015-0164-9.
27. Burdo O.S., Cheremnykh O.K., Verkhoglyadova O.P. Study of ballooning modes in the inner magnetosphere of the Earth. Bull. Russian Academy of Sciences: Physics. 2000, vol. 64, iss. 9, pp. 1896-1900. (In Russian).
28. Catto P.J., Tang W.M., Baldwin D.E. Generalized gyrokinetics. Plasma Phys. 1981, vol. 23, no. 7, rr. 639-650. DOI:https://doi.org/10.1088/0032-1028/23/7/005.
29. Chelpanov A.A., Kobanov N.I. Methods for registering torsional waves in the lower solar atmosphere: Do observations support the theory? 44th COSPAR Scientific Assembly. 16-24 July, 2022, vol. 44, p. 2502.
30. Chelpanov A.A., Kobanov N.I., Chupin S.A. Search for the observational manifestations of torsional Alfvén waves in solar faculae. Central European Astrophys. Bull. 2016a, vol. 40. rr. 29-34.
31. Chelpanov M.A., Mager P.N., Klimushkin D.Y., Mager O.V., Berngardt O.I. Experimental evidence of drift compressional waves in the magnetosphere: An Ekaterinburg coherent decameter radar case study. J. Geophys. Res.: Space Phys. 2016b, vol. 121, iss. 2, pp. 1315-1326. DOI:https://doi.org/10.1002/2015JA022155.
32. Chelpanov M.A., Mager P.N., KlimushkinD.Yu., Mager O.V. Observing magnetospheric waves propagating in the direction of electron drift with Ekaterinburg decameter coherent radar. Solar-Terr. Phys. 2019, vol. 5. iss. 1, pp. 51-57. DOI: 10.12737/ stp-51201907.
33. Chen L., Hasegawa A.A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance. J. Geophys. Res. 1974a, vol. 79, iss. 7, pp. 1024-1032. DOI: 10.1029/ JA079i007p01024.
34. Chen L., Hasegawa A.A. Theory of long-period magnetic pulsations 2. Impulse excitation of surface eigenmode. J. Geophys. Res. 1974b, vol. 79, iss. 7, pp. 1033-1037. DOI: 10.1029/ JA079i007p01033.
35. Chisham G., Lester M., Milan S.E., Freeman M.P., Bristow W.A., Grocott A., et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surveys in Geophys. 2007, vol. 28, pp. 33-109 DOI:https://doi.org/10.1007/s10712-007-9017-8.
36. Constantinescu O.D., Glassmeier K.-H., Plaschke F., et al. THEMIS observations of duskside compressional Pc5 waves. J. Geophys. Res. 2009, vol. 114, A00C25. DOI:https://doi.org/10.1029/2008 JA013519.
37. Cornwall J.M., Sims A.R., White R.S. Atmospheric density experienced by radiation belt protons, J. Geophys. Res. 1965, vol. 70, no. 13, pp. 3099-3111. DOI:https://doi.org/10.1029/JZ070i013p03099.
38. Cranmer S.R., van Ballegooijen A.A., Edgar R.J. Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 2007, vol. 171, no. 2, rr. 520-551. DOI:https://doi.org/10.1086/518001.
39. Crooker N.U., Siscoe G.L., Geller R.B. Persistent pressure anisotropy in the subsonic magnetosheath region. Geophys. Res. Lett. 1976, vol. 3, pp. 65-68. DOI:https://doi.org/10.1029/GL003i002p00065.
40. De Moortel I. Longitudinal waves in coronal loops. Space Sci. Rev. 2009, vol. 149, iss. 1-4, pp. 65-81. DOI: 10.1007/ s11214-009-9526-5.
41. De Pontieu B., Erdélyi R., De Moortel I. How to channel photospheric oscillations into the corona. Astrophys. J., 2005, vol. 624, pp. L61-L64. DOI:https://doi.org/10.1086/430345.
42. De Pontieu B., McIntosh S.W., Carlsson M. Chromospheric Alfvénic waves strong enough to power the solar wind. Science. 2007a, vol. 318, iss. 5856, pp. 1574. DOI:https://doi.org/10.1126/science. 1151747.
43. De Pontieu B., McIntosh S., Hansteen V.H., Carlsson M., Schrijver Carolus J., Tarbell T.D., et al. A tale of two spicules: The impact of spicules on the magnetic chromosphere. Publ. Astron. Soc. Japan. 2007b, vol. 59, pp. S655-S662. DOI: 10.1093/ pasj/59.sp3.S655.
44. De Pontieu B., McIntosh S., Martinez-Sykora J., Peter H., Pereira T.M.D. Why is non-thermal line broadening of spectral lines in the lower transition region of the sun independent of spatial resolution? Astrophys. J. Lett. 2015, vol. 799, no. 1, p. L12. DOI:https://doi.org/10.1088/2041-8205/799/1/L12.
45. Denton R.E., Vetoulis G. Global poloidal mode. J. Geophys. Res. 1998, vol. 103, iss. A4, rr. 6729-6739. DOI: 10.1029/ 97JA03594.
46. Dmitrienko I.S., Mazur V.A. The spatial structure of quasicircular Alfvén modes of waveguide at the plasmapause: Interpretation of Pc1 pulsations. Planetary and Space Sci. 1992, vol. 40, No. 1, pp. 139-148. DOI:https://doi.org/10.1016/0032-0633(92)90156-I.
47. Dmitriev A.V., Suvorova A.V., Veselovsky I.S. Statistical Characteristics of the Heliospheric Plasma and Magnetic Field at the Earth’s Orbit during Four Solar Cycles 20-23. Handbook on Solar Wind: Effects, Dynamics and Interactions. Ed. Hans E. Johannson. New York: NOVA Science Publishers, Inc., 2009. pp. 81-144. DOI:https://doi.org/10.48550/arXiv.1301.2929.
48. Eastmann T.E., Frank L.A. Observations of high-speed plasma flow near the Earth’s magnetopause: Evidence for reconnection? J. Geophys. Res. 1982, vol. 87, iss. A4, pp. 2187-2201. DOI:https://doi.org/10.1029/JA087iA04p02187.
49. Edwin P.M., Roberts B. Wave propagation in a magnetic cylinder. Solar Phys. 1983, vol. 88, iss. 1-2, pp. 179-191. DOI:https://doi.org/10.1007/BF00196186.
50. Feldman U., Dammasch I.E., Wilhelm K. The morphology of the solar upper atmosphere during the sunspot minimum. Space Sci. Rev. 2000, vol. 93, pp. 411-472. DOI:https://doi.org/10.1023/A:1026 518806911.
51. Fox N.J., Velli M.C., Bale S.D. Decker R., Driesman A., Howard R.A., et al. The Solar Probe Plus Mission: Humanity’s first visit to our star. Space Sci. Rev. 2016, vol. 204, pp. 7-48. DOI:https://doi.org/10.1007/s11214-015-0211-6.
52. Ganushkina N.Y., Liemohn M.W., Dubyagin S. Current systems in the Earth’s magnetosphere. Rev. Geophys. 2018, vol. 56, pp. 309-332. DOI:https://doi.org/10.1002/2017RG000590.
53. Gauld J.K., Yeoman T.K., Davies J.A., Milan S.E., Honary F. SuperDARN radar HF propagation and absorption response to the substorm expansion phase. Ann. Geophys. 2002, vol. 20, pp. 1631-1645. DOI:https://doi.org/10.5194/angeo-20-1631-2002.
54. Gelfreikh G.B., Shibasaki K. Radio Magnetography of solar active regions using radio observations. Magnetic Fields and Solar Processes ESA Special Publication. Ed. A. Wilson et al., 1999, p. 1339.
55. Gjerloev J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012, vol. 117, iss. A9, A09213. DOI: 10.1029/ 2012JA017683.
56. Glassmeier K.-H., Buchert S., Motschmann U., Korth A., Pedersen A. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities. Ann. Geophys. 1999, vol. 17, iss. 3, pp. 338-350. DOI: 10.1007/ s00585-999-0338-4.
57. Glassmeier K.-H., Mager P.N., Klimushkin D.Y. Concerning ULF pulsations in Mercury's magnetosphere. Geophys. Res. Lett. 2003, vol. 30, iss. 18, p. 1928. DOI:https://doi.org/10.1029/2003GL017175.
58. Gopasyuk O.S. Studies of the Sun in Crimea. Bull. Crimean Astrophys. Observatory. 2016, vol. 112, pp. 126-132. (In Russian).
59. Greenwald R.A., Baker K.B., Dudeney J.R., Pinnock M., Jones T.B., Thomas E.C., et al. DARN/SuperDARN. Space Sci. Rev. 1995, vol. 71, iss. 1, pp. 761-796. DOI: 10.1007/ BF00751350.
60. Grigoryev V.M., Demidov M.L., KolobovD.Yu., Pulyaev V.A., Skomorovsky V.I., Chuprakov S.A. Project of the large solar telescope with mirror 3 m in diameter. Solar-Terr. Phys. 2020, vol. 6, iss. 2, pp. 14-29. DOI:https://doi.org/10.12737/stp-62202002.
61. Guglielmi A.V. Diagnostics of the magnetosphere and interplanetary medium by means of pulsations. Space Sci. Rev. 1974, vol. 16, pp. 331-345. DOI:https://doi.org/10.1007/BF00171562.
62. Guglielmi A.V., Dobnya B.V. Hydromagnetic emission of interplanetary plasma. JETP Lett. 1973, vol. 18, no. 10, pp. 353-355.
63. Guglielmi A.V., Potapov A.S. Influence of the interplanetary magnetic field on ULF oscillations of the ionospheric resonator. Cosmic Res. 2017, vol. 55, pp. 248-252. DOI:https://doi.org/10.1134/S00 10952517030042.
64. Guglielmi A.V., Potapov A.S. Frequency-modulated ULF waves in near-Earth space. Physics-Uspekhi. 2021, vol. 64, no. 5, pp. 452-467. DOI:https://doi.org/10.3367/UFNe.2020.06.038777.
65. Guglielmi A.V., Zolotukhina N.A. Excitation of Alfvén oscillations of the magnetosphere by the asymmetric ring current. Res. on Geomagntism, Aeronomy, and Solar Phys. 1980, vol. 50, pp. 129-137. (In Russian).
66. Guglielmi A.V., Potapov A.S., Russell C.T. The ion cyclotron resonator in the magnetosphere. JETP Lett. 2000, vol. 72, iss. 6, pp. 298-300. DOI:https://doi.org/10.1134/1.1328441.
67. Guglielmi A., Kangas J., Potapov A. Quasiperiodic modulation of the Pc1 geomagnetic pulsations: An unsettled problem. J. Geophys. Res. 2001, vol. 106, iss. A11, pp. 25847-25855. DOI:https://doi.org/10.1029/2001JA000136.
68. Guglielmi A., Potapov A., Dovbnya B. Five-minute solar oscillations and ion-cyclotron waves in the solar wind. Solar Phys. 2015, vol. 290, iss. 10, pp. 3023-3032. DOI:https://doi.org/10.1007/s11207-015-0772-2.
69. Hannah I.G., Kontar E.P. Differential emission measures from the regularized inversion of Hinode and SDO data. Astron. Astrophys. 2012, vol. 539, p. A146. DOI:https://doi.org/10.1051/0004-6361/201117576.
70. Hao Y.X., Zong Q.-G., Wang Y.F. Zhou X.-Z., Zhang H., Fu S.Y., et al. Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail. J. Geophys. Res.: Space Phys. 2014, vol. 119, iss. 10, pp. 8262-8273. DOI:https://doi.org/10.1002/2014JA020023.
71. Hasegawa A. Drift mirror instability in the magnetosphere. Phys. of Fluids. 1969. vol. 12, iss. 12, pp. 2642-2650. DOI:https://doi.org/10.1063/1.1692407.
72. Hasegawa A., Chen L. Theory of magnetic pulsations. Space Sci. Rev. 1974, vol. 16, pp. 347-359. DOI:https://doi.org/10.1007/BF00171563.
73. Hassler D.M., Rottman G.J., Shoub E.C., Holzer T.E. Line broadening of MG X lambda lambda 609 and 625 coronal emission lines observed above the solar limb. Astrophys. J. Lett. 1990, vol. 348. L77. DOI:https://doi.org/10.1086/185635.
74. Hughes W.J., Southwood D.J. An illustration of modification of geomagnetic pulsation structure by the ionosphere. J. Geophys. Res. 1976a, vol. 81, iss. 19, pp. 3241-3247. DOI:https://doi.org/10.1029/JA081i019p03241.
75. Hughes W.J., Southwood D.J. The screening of micropulsation signals by the atmosphere and ionosphere. J. Geo-phys. Res. 1976b, vol. 81, iss. 19, pp. 3234-3240. DOI: 10.1029/ JA081i019p03234.
76. Jacobs J.A., Kato Y., Matsushita S., Troitskaya V.A. Classification of geomagnetic micropulsations. J. Geophys. Res. 1964, vol. 69, iss. 1, pp. 180-181. DOI:https://doi.org/10.1029/JZ069i001p00180.
77. James M.K., Yeoman T.K., Mager P.N., Klimushkin D.Yu. Multiradar observations of substorm-driven ULF waves. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 5213-5232. DOI:https://doi.org/10.1002/2015JA022102.
78. Keiling A., Wygant J.R., Cattell C., Peria W., Parks G., Temerin M., et al. Correlation of Alfvén wave Poynting flux in the plasma sheet at (4-7)RE with ionospheric electron energy flux. J. Geophys. Res. 2002, vol. 107, iss. A7, pp. SMP24-1-SMP24-13. DOI:https://doi.org/10.1029/2001JA900140.
79. Kepko L., Spence H.E. Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J. Geophys. Res.: Space Phys. 2003, vol. 108, 1257. DOI:https://doi.org/10.1029/2002JA009676.
80. Kepko L., Spence H.E., Singer H.J. ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys. Res. Lett. 2002, vol. 29, iss. 8, pp. 39-1-39-4. DOI:https://doi.org/10.1029/2001GL014405.
81. Khomenko E. Multi-Fluid Effects in Magnetohydrodynamics. Oxford Research Encyclopedia of Physics. 2022. DOI:https://doi.org/10.1093/acrefore/9780190871994.013.4.
82. Kleimenova N.G. Geomagnetic pulsations. Model of Space. Vol. 1. Eds. M.I. Panasyuk, L.S. Novikov. Moscow, KDU, 2007, pp. 611-626. (In Russian).
83. Kleimenova N.G., Kozyreva O.V., Bitterli J. Longperiod geomagnetic pulsations in the theta aurora region on May 11, 1983. Geomagnetism, Aeronomy. 1995, vol. 35, pp. 44-48.
84. Klimushkin D.Y. Resonators for hydromagnetic waves in the magnetosphere. J. Geophys. Res. 1998, vol. 103, iss. A2, pp. 2369-2375. DOI:https://doi.org/10.1029/97JA02193.
85. Klimushkin D.Yu., Mager P.N. Spatial structure and stability of coupled Alfvén and drift compressional modes in non-uniform magnetosphere: Gyrokinetic treatment. Planetary and Space Sci. 2011, vol. 59, pp. 1613-1620. DOI:https://doi.org/10.1016/j.pss.2011.07.010.
86. Klimushkin D.Yu., Mager P.N., Glassmeier K.-H. Toroidal and poloidal Alfven waves with arbitrary azimuthal wave numbers in a finite pressure plasma in the Earth’s magnetosphere. Ann. Geophys. 2004, vol. 22, pp. 267-287. DOI:https://doi.org/10.5194/angeo-22-267-2004.
87. Klimushkin D.Yu, Mager P.N., Marilovtseva O.S. Parallel structure of Pc1 ULF oscillations in multi-ion magnetospheric plasma at finite ion gyrofrequency. J. Atmos. Solar-Terr. Phys. 2010, vol. 72, pp. 1327-1332. DOI:https://doi.org/10.1016/j.jastp.2010. 09.019.
88. Klimushkin D.Yu., Mager P.N., Pilipenko V.A. On the ballooning instability of the coupled Alfvén and drift compressional modes. Earth, Planets and Space. 2012, vol. 64, pp. 777-781. DOI:https://doi.org/10.5047/eps.2012.04.002.
89. Klimushkin D.Y., Nakariakov V.M., Mager P.N., Cheremnykh O.K. Corrugation instability of a coronal arcade. Solar Phys. 2017, vol. 292. 184. DOI:https://doi.org/10.1007/s11207-017-1209-x.
90. Klimushkin D., Mager P., Chelpanov M., Kostarev D. Interaction between long-period ULF waves and charged particles in the magnetosphere: Theory and observations (Overview). Solar-Terr. Phys. 2021. vol. 7, iss. 4, pp. 33-66. DOI:https://doi.org/10.12737/stp-74202105.
91. Kobanov N.I., Chelpanov A.A. Oscillations accompanying HeI 10830 Å negative flare in a solar facula. II. Response of the transition region and corona. Solar Phys. 2019, vol. 294, iss. 5, p. A58. DOI:https://doi.org/10.1007/s11207-019-1449-z.
92. Kobanov N.I., Makarchik D.V. Developing modulationless measuring of magnetic fields and differential velocities at Sayan observatory. Il Nuovo Cimento. 2002, vol. 25, iss. 5-6, p. 695.
93. Kobanov N.I., Chelpanov A.A., Kolobov D.Y. Oscillations above sunspots from the temperature minimum to the corona. Astron. Astrophys. 2013, vol. 554. A146. DOI:https://doi.org/10.1051/0004-6361/201220548.
94. Korotova G., Sibeck D., Engebretson M., Wygant J., Thaller S., Spence H., et al. Multipoint spacecraft observations of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere on 1-2 May 2014. Ann. Geophys. 2016, vol. 34, pp. 985-998. DOI:https://doi.org/10.5194/angeo-34-985-2016.
95. Korotova G., Sibeck D., Thaller S., Wygant J., Spence H., Kletzing C., et al. Multisatellite observations of the magnetosphere response to changes in the solar wind and interplanetary magnetic field. Ann. Geophys. 2018, vol. 36, pp. 1319-1333. DOI:https://doi.org/10.5194/angeo-36-1319-2018.
96. Kostarev D.V., Mager P.N. Drift-compression waves propagating in the direction of energetic electron drift in the magnetosphere. Solar-Terr. Phys. 2017, vol. 3, iss. 3, pp. 20-29. DOI:https://doi.org/10.12737/stp-33201703.
97. Kostarev D.V., Mager P.N., Klimushkin D.Y. Alfvén wave parallel electric field in the dipole model of the magnetosphere: gyrokinetic treatment. J. Geophys. Res.: Space Phys. 2021, vol. 126, iss. 2. e2020JA028611. DOI:https://doi.org/10.1029/2020JA028611.
98. Kotova G.A., Leonovich A.S., Mazur V.A., Kovtyukh A.S., Panasyuk M.I., Trakhtengerts V.Yu., Demekhov A.G. Inner magnetosphere. Plasma Heliogeophysics. Eds. Zelenyi L.M., Veselovsky I.S. Moscow, Fizmatlit Publ., 2008, pp. 484-569. (In Russian).
99. Kovadlo P.G., Lubkov A.A., Bevzov A.N., Budnikov K., Vlasov S.V., Zotov A.A., et al. Automation system for the Large Solar Vacuum Telescope. Optoelectronics, Instrumentation and Data Processing. 2016, vol. 52, pp. 187-195. DOI:https://doi.org/10.3103/S8756699016020126.
100. Kovtyukh A.S. Geocorona of hot plasma. Cosmic Res. 2001, vol. 39, pp. 527-558. DOI:https://doi.org/10.1023/A:1013074126604.
101. Krieger A.S., Timothy A.F., Roelof E.C. A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 1973, vol. 29, iss 2, pp. 505-525. DOI:https://doi.org/10.1007/BF00150828.
102. Landau L.D. On oscillations of electron plasma. J. Experimental and Theoretical Phys. 1946, vol. 16, p. 574. (In Russian).
103. Le G., Chi P.J., Strangeway R.J., Russell C.T., Slavin J.A., Takahashi K., et al. Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm. Geophys. Res. Lett. 2017, vol. 44, pp. 3456-3464. DOI:https://doi.org/10.1002/2017GL073048.
104. Lemen J.R., Title A.M., Akin D.J., Boerner P.F., Chou., Drake J.F., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 2012, vol. 275, iss. 1-2, pp. 17-40. DOI:https://doi.org/10.1007/s11207-011-9776-8.
105. Leonovich A.S., Mazur V.A. Resonance excitation of standing Alfven waves in an axisymmetric magnetosphere (monochromatic oscillations). Planetary and Space Sci. 1989, vol. 37, iss. 9, pp. 1095-1108. DOI:https://doi.org/10.1016/0032-0633(89)90081-0.
106. Leonovich A.S., Mazur V.A. A theory of transverse small-scale standing Alfvén waves in an axially symmetric magnetosphere.Planetary and Space Sci. 1993, vol. 41, iss. 9, pp. 697-717. DOI:https://doi.org/10.1016/0032-0633(93)90055-7.
107. Leonovich A.S., Mazur V.A. On resonance properties of the Earth’s magnetosphere. International Conference “Solar-Terrestrial Relations and Physics of Earthquake Precursors”. September 9-13, 2013, pp. 111-118. (In Russian).
108. Leonovich A.S., Mazur V.A.Linear theory of MHD oscillations of the magnetosphere. Moscow, Fizmatlit Publ., 2016, 480 p. (In Russian).
109. Leonovich A.S., Mishin V.V., Cao J.B. Penetration of magnetosonic waves into the magnetosphere: influence of a transition layer. Ann. Geophys. 2003, vol. 21, pp. 1083-1093. DOI:https://doi.org/10.5194/angeo-21-1083-2003.
110. Leonovich A.S., Kozlov D.A., Pilipenko V.A. Magnetosonic resonance in a dipole-like magnetosphere. Ann. Geophys. 2006, vol. 24, pp. 2277-2289. DOI:https://doi.org/10.5194/angeo-24-2277-2006.
111. Leonovich A.S., Klimushkin D.Y., Mager P.N. Experimental evidence for the existence of monochromatic transverse small-scale standing Alfvén waves with spatially dependent polarization. J. Geophys. Res.: Space Phys. 2015, vol. 120, iss. 7, pp. 5443-5454. DOI:https://doi.org/10.1002/2015JA021044.
112. Lifshits A.E., Fedorov E.N. Hydromagnetic oscillations of the magnetospheric-ionospheric resonator. Proc. Academy of Sciences. 1986, vol. 287, iss. 1, pp. 90-95. (In Russian).
113. Mager P.N., Klimushkin D.Yu. Alfvén ship waves: high-m ULF pulsations in the magnetosphere generated by a moving plasma inhomogeneity. Ann. Geophys. 2008, vol. 26, iss. 6, pp. 1653-1663. DOI:https://doi.org/10.5194/angeo-26-1653-2008.
114. Mager P.N., Klimushkin D.Y., Kostarev D.V. Drift-compressional modes generated by inverted plasma distributions in the magnetosphere. J. Geophys. Res.: Space Phys. 2013, vol. 118, pp. 4915-4923. DOI:https://doi.org/10.1002/jgra.50471.
115. Mager P.N., Mikhailova O.S., Mager O.V., Klimushkin D.Y. Eigenmodes of the transverse Alfvénic resonator at the plasmapause: A Van Allen Probes case study. Geophys. Res. Lett. 2018, vol. 45, iss. 20, pp. 10796-0804. DOI:https://doi.org/10.1029/2018GL079596.
116. Mandal S., Yuan D., Fang X., Banerjee D., Pant V., van Doorsselaere T. Reflection of propagating slow magneto-acoustic waves in hot coronal loops: Multi-instrument observations and numerical modeling. Astrophys. J. 2016, vol. 828, iss. 2, p. 72. DOI:https://doi.org/10.3847/0004-637X/828/2/72.
117. Marcucci M.F., Bavassano Cattaneo M.B., Pallocchia G., Amata E., Bruno R., Di Lellis A.M., et al. Energetic magnetospheric oxygen in the magnetosheath and its response to IMF orientation: Cluster observations. J. Geophys. Res.: Space Phys. 2004, vol. 109, iss. A7. A07203. DOI:https://doi.org/10.1029/2003JA010312.
118. Marsch E. Solar Wind and Kinetic Heliophysics - Hannes Alfven Medal Lecture at the EGU General Assembly 2018. Proc. 20th EGU General Assembly. 4-13 April, 2018, Vienna, Austria, pp. 1790.
119. Mauk B.H., Fox. N.J., Kanekal S.G., Kessel R.L., Sibeck D.G., Ukhorskiy A. Science objectives and rationale for the Radiation Belt Storm Probes Mission. Space Sci. Rev. 2013, vol. 179, pp. 3-27. DOI:https://doi.org/10.1007/s11214-012-9908-y.
120. Mazur V.A. Resonance excitation of the magnetosphere by hydromagnetic waves incident from solar wind. Plasma Phys. Rep. 2010, vol. 36, iss. 11, pp. 953-963. DOI: 10.1134/ S1063780X10110048.
121. Mazur V.A., Chuiko D.A. Energy flux in 2-D MHD waveguide in the outer magnetosphere. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 1946-1959. DOI:https://doi.org/10.1002/2016JA023632.
122. McIntosh S.W., De Pontieu B., Carlsson M., Hansteen V., Boerner P., GoossensM. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature. 2011, vol. 475, pp. 477-480. DOI:https://doi.org/10.1038/nature10235.
123. McPherron R.L. Magnetic Pulsations: Their sources and relation to solar wind and geomagnetic activity. Surveys in Geophys. 2005, vol. 26, pp. 545-592. DOI:https://doi.org/10.1007/s10712-005-1758-7.
124. Mead G.D., Fairfield D.H. A quantitative magnetospheric model derived from spacecraft magnetometer data. J. Geophys. Res. 1975, vol. 80, iss. 4, pp. 523-534. DOI:https://doi.org/10.1029/JA080 i004p00523.
125. Menk F.W. Magnetospheric ULF waves: A review. The Dynamic Magnetosphere. IAGA Special Sopron Book Ser. Eds. W. Liu. M. Fujimoto. 2011, vol. 3. Dordrecht: Springer Netherlands, 2011, pp. 223-256. DOI:https://doi.org/10.1007/978-94-007-0501-2_13.
126. Mikhailova O.S., Mager P.N., Klimushkin D.Y. Two modes of ion-ion hybrid waves in magnetospheric plasma. Plasma Phys. and Controlled Fusion. 2020a, vol. 62, iss. 2, 025026. DOI:https://doi.org/10.1088/1361-6587/ab5b32.
127. Mikhailova O.S., Mager P.N., Klimushkin D.Y. Transverse resonator for ion-ion hybrid waves in dipole magnetospheric plasma. Plasma Phys. and Controlled Fusion. 2020b, vol. 62, iss. 9. 095008. DOI:https://doi.org/10.1088/1361-6587/ab9be9.
128. Mikhailova O.S., Klimushkin D.Yu., Mager P.N. The current state of the theory of Pc1 range ULF pulsations in magnetospheric plasma with heavy ions: A review. Solar-Terr. Phys. 2022a. Vol. 8. Iss. 1. P. 3-18. DOI:https://doi.org/10.12737/stp-81202201.
129. Mikhailova O.S., Smotrova E.E., Mager P.N. Resonant generation of an Alfvén wave by a substorm injected electron cloud: A Van Allen probe case study. Geophys. Res. Lett. 2022b. Vol. 49, no. 19. e2022GL100433. DOI:https://doi.org/10.1029/2022GL100433.
130. Mikhailovskii A.B., Fridman A.M. Drift waves in a finite-pressure plasma.Soviet Physics-JETP. 1967, vol. 24, iss. 5, pp. 965-974.
131. Miyoshi Y., Shinohara I., Takashima T. Asamura K., Higashio N., Mitani T., et al. Geospace exploration project ERG. Earth, Planets and Space. 2018, vol. 70. 101. DOI:https://doi.org/10.1186/s40623-018-0862-0.
132. Morton R.J., Tomczyk S., Pinto R. Investigating Alfvénic wave propagation in coronal open-field regions. Nature Communications. 2015, vol. 6, p. 7813. DOI:https://doi.org/10.1038/ncomms8813.
133. Motoba T., Ogawa Y., Ebihara Y., Kadokura A., Gerrard A.J., Weatherwax A.T. Daytime Pc5 diffuse auroral pulsations and their association with outer magnetospheric ULF waves. J. Geophys. Res.: Space Phys. 2021, vol. 126, iss. 8. e2021JA029218. DOI:https://doi.org/10.1029/2021JA029218.
134. Nakariakov V.M., Verwichte E. Coronal waves and oscillations. Living Reviews in Solar Physics. 2005, vol. 2, iss. 3. DOI:https://doi.org/10.12942/lrsp-2005-3.
135. Nakariakov V.M., Melnikov V.F., Reznikova V.E. Global sausage modes of coronal loops. Astron. Astrophys. 2003, vol. 412, pp. L7-L10. DOI:https://doi.org/10.1051/0004-6361:20031660.
136. Nakariakov V.M., Pascoe D.J., Arber T.D. Short quasi-periodic MHD waves in coronal structures. Space Sci. Rev. 2005, vol. 121, iss. 1-4, pp. 115-125. DOI:https://doi.org/10.1007/s11214-006-4718-8.
137. Nakariakov V.M., Anfinogentov S.A., Nisticò G., Lee D.-H. Undamped transverse oscillations of coronal loops as a self-oscillatory process. Astron. Astrophys. 2016a, vol. 591. L5. DOI:https://doi.org/10.1051/0004-6361/201628850.
138. Nakariakov V.M., Pilipenko V., Heilig B., Jelínek P., Karlický M., Klimushkin D.Y., et al. Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: Towards consolidated understanding. Space Sci. Rev. 2016b, vol. 200, pp. 75-203. DOI:https://doi.org/10.1007/s11214-015-0233-0.
139. Nakariakov V.M., Anfinogentov S.A., Antolin P., Jain R., Kolotkov D.Y, Kupriyanova E.G., et al. Oscillations of coronal loops. Space Sci. Rev. 2021, vol. 217, iss. 6, article id. 73. DOI:https://doi.org/10.1007/s11214-021-00847-2.
140. Nielsen E. The STARE system and some of its applications.The IMS Source Book: Guide to the International Magnetospheric Study Data Analysis. Eds. C.T. Russel, D.J. Southwood. Washington DC: AGU, 1982, pp. 213-224.
141. Nishitani N., Ruohoniemi J.M., Lester M., Baker J.B.H., Koustov A.V., Shepherd S.G., et al. Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars. Progress in Earth and Planetary Sci. 2019, vol. 6, iss. 1, p. 27. DOI:https://doi.org/10.1186/s40645-019-0270-5.
142. Ofman L., Wang T. hot coronal loop oscillations observed by SUMER: Slow magnetosonic wave damping by thermal conduction. Astrophys. J. 2002, vol. 580, iss. 1, pp. L85-L88. DOI:https://doi.org/10.1086/345548.
143. Oimatsu S., Nosé M., Takahashi K. Yamamoto K., Keika K., Kletzing C.A., et al. Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave. J. Geophys. Res.: Space Phys. 2018a, vol. 123, iss. 5, pp. 3421-3435. DOI: 10.1029/ 2017JA025087.
144. Oimatsu S., Nosé M., Teramoto M., Yamamoto K., Matsuoka A., Kasahara S., et al. Drift-bounce resonance between Pc5 pulsations and ions at multiple energies in the nightside magnetosphere: Arase and MMS observations. Geophys. Res. Lett. 2018b, vol. 45, iss. 15, pp. 7277-7286. DOI: 10.1029/ 2018GL078961.
145. Papamastorakis I., Paschmann G., Sckopke N., Bame S.J., Berchem J. The magnetopause as a tangential discontinuity for large field rotation angles. J. Geophys. Res. 1984, vol. 89, iss. A1, pp. 127-135. DOI:https://doi.org/10.1029/JA089iA01p00127.
146. Parker E.N. Interaction of the solar wind with the geomagnetic field. Physics of Fluids. 1958, vol. 1, pp. 171-187. DOI:https://doi.org/10.1063/1.1724339.
147. Pilipenko V.A. ULF waves on the ground and in space. J. Atmos. Terr. Phys. 1990, vol. 52, no. 12, pp. 1193-1209. DOI:https://doi.org/10.1016/0021-9169(90)90087-4.
148. Pilipenko V., Belakhovsky V., Murr D., Fedorov E., Engebretson M. Modulation of total electron content by ULF Pc5 waves. J. Geophys. Res.: Space Phys. 2014, vol. 119, iss. 6, pp. 4358-4369. DOI:https://doi.org/10.1002/2013JA019594.
149. Plowman J., Kankelborg C., Martens P. Fast differential emission measure inversion of solar coronal data. Astrophys. J. 2013, vol. 771, no. 1, p. 2. DOI:https://doi.org/10.1088/0004-637X/771/1/2.
150. Pokhotelov O.A., Pilipenko V.A., Amata E. Drift anisotropy instability of a finite-β magnetospheric plasma. Planetary and Space Sci. 1985, vol. 33, iss. 11, pp. 1229-1241. DOI:https://doi.org/10.1016/0032-0633(85)90001-7.
151. Ponomarenko P.P., Menk F.W., Waters C.L. Visualization of ULF waves in SuperDARN data. Geophys. Res. Lett. 2003, vol. 30, iss. 18. 1926. DOI:https://doi.org/10.1029/2003GL017757.
152. Potapov A.S., Mazur V.A. Pc3 pulsations: From the source in the upstream region to Alfvén resonances in the magnetosphere. Theory and observations. Solar wind sources of magnetospheric ultralowfrequency waves. Geophys. Monograph Ser. 1994, vol. 81. Eds. M.J. Engebretson, K. Takahashi, M. Scholer. Washington DC: AGU, 1994, pp. 135-145. DOI:https://doi.org/10.1029/GM081p0135.
153. Potapov A.S., Polyushkina T.N. Experimental evidence for direct penetration of ULF waves from the solar wind and their possible effect on acceleration of radiation belt electrons. Geomagnetism and Aeronomy. 2010, vol. 50, no. 8, pp. 950-957. DOI:https://doi.org/10.1134/S0016793210080049.
154. Potapov A.S., Polyushkina T.N., Pulyaev V.A. Observations of ULF waves in the solar corona and in the solar wind at the Earth’s orbit. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 235-242. DOI:https://doi.org/10.1016/j.jastp.2013.06.001.
155. Rakhmanova L., Riazantseva M., Zastenker G. Plasma and magnetic field turbulence in the Earth’s magnetosheath at ion scales. Frontiers in Astronomy and Space Sci. 2021, vol. 7. DOI:https://doi.org/10.3389/fspas.2020.616635.
156. Ren J., Zong Q. G., Miyoshi Y., Rankin R., Spence H.E., Funsten H.O., Wygant J.R., Kletzing C.A. A Comparative Study of ULF Waves’ Role in the Dynamics of Charged Particles in the Plasmasphere: Van Allen Probes Observation. J. Geophys. Res.: Space Phys. 2018. Vol. 123, no. 7. P. 5334-5343. DOI:https://doi.org/10.1029/2018JA025255.
157. Ren J., Zong Q.-G., Zhou X.Z., Spence H.E., Funsten H.O., Wygant J.R., Rankin R. Cold Plasmaspheric Electrons Affected by ULF Waves in the Inner Magnetosphere: A Van Allen Probes Statistical Study. J. Geophys. Res.: Space Phys. 2019. Vol. 124, no. 10. P. 7954-7965. DOI:https://doi.org/10.1029/2019JA027009.
158. Reznikova V.E., van Doorsselaere T., Kuznetsov A.A. Perturbations of gyrosynchrotron emission polarization from solar flares by sausage modes: forward modeling. Astron. Astrophys. 2015, vol. 575. A47. DOI:https://doi.org/10.1051/0004-6361/201424548.
159. Rimmele T.R., Warner M., Keil S.L., Goode P.R., Knölker M., Kuhn J.R., et al. The Daniel K. Inouye Solar Telescope - Observatory Overview. Solar Phys. 2020, vol. 295, iss. 12. A172. DOI:https://doi.org/10.1007/s11207-020-01736-7.
160. Rincon F., Rieutord M. The Sun’s supergranulation.Living Reviews in Solar Physics. 2018, vol. 15. 6. DOI:https://doi.org/10.1007/s41116-018-0013-5.
161. Robustini C., Esteban Pozuelo S., Leenaarts J., de la Cruz Rodríguez J. Chromospheric observations and magnetic configuration of a supergranular structure. Astron. Astrophys. 2019, vol. 621, p. A1. DOI:https://doi.org/10.1051/0004-6361/201833246.
162. Rubtsov A.V., Mager P.N., Klimushkin D.Y. Ballooning instability of azimuthally small scale coupled Alfvén and slow magnetoacoustic modes in two-dimensionally inhomogeneous magnetospheric plasma. Physics of Plasmas. 2018a, vol. 25, iss. 10. 102903. DOI:https://doi.org/10.1063/1.5051474.
163. Rubtsov A.V., Agapitov O.V., Mager P.N., Klimushkin D.Yu., Mager O.V., Mozer F.S., Angelopoulos V. Drift resonance of compressional ULF waves and substorm-injected protons from multipoint THEMIS measurements. J. Geophys. Res.: Space Phys. 2018b, vol. 123, iss. 11, pp. 9406-9419. DOI: 10.1029/ 2018JA025985.
164. Rubtsov A.V., Mager P.N., Klimushkin D.Y. Ballooning Instability in the Magnetospheric Plasma: Two-Dimensional Eigenmode Analysis. J. Geophys. Res.: Space Phys. 2020, vol. 125, iss. 1. e2019JA027024. DOI:https://doi.org/10.1029/2019JA027024.
165. Rubtsov A.V., Mikhailova O.S., Mager P.N., Klimushkin D.Y. Multi-spacecraft observation of the pre-substorm long-lasting poloidal ULF wave. Geophys. Res. Lett. 2021, vol. 48, iss. 23. e2021GL096182. DOI:https://doi.org/10.1029/2021GL096182.
166. Ruderman M.S., Roberts B. The Damping of Coronal Loop Oscillations. Astrophys. J. 2002, vol. 577, iss. 1, pp. 475-486. DOI:https://doi.org/10.1086/342130.
167. Samsonov A.A., Němeček Z., Šafránková J., Jelínek K. Why does the total pressure on the subsolar magnetopause differ from the solar wind dynamic pressure? Cosmic Res. 2013, vol. 51, iss. 1. pp. 37-45. DOI:https://doi.org/10.1134/S0010952513010073.
168. Shi X., Baker J.B.H., Ruohoniemi J.M., Hartinger M.D., Murphy K.R., Rodriguez J.V., et al. Long-Lasting Poloidal ULF Waves Observed by Multiple Satellites and High-Latitude SuperDARN Radars. J. Geophys. Res.: Space Phys. 2018, vol. 123, iss. 10, pp. 8422-8438. DOI:https://doi.org/10.1029/2018JA026003.
169. Shukhobodskaia D., Shukhobodskiy A.A., Erdélyi R. Flute oscillations of cooling coronal loops with variable cross-section Astron. Astrophys. 2021, vol. 649, id. A36, 9 p. DOI:https://doi.org/10.1051/0004-6361/202140314.
170. Snodgrass H.B., Wilson P.R. Real and Virtual Unipolar Regions.Solar Phys. 1993, vol. 148, iss. 2. P. 179-194. DOI:https://doi.org/10.1007/BF00645084.
171. Soler R. Fluting modes in transversely nonuniform solar flux tubes. Astrophys. J. 2017, vol. 850, iss. 2, article id. 114, 10 p. DOI:https://doi.org/10.3847/1538-4357/aa956e.
172. Song W.-B., Feng X.-S., Shen F. The heating of the solar transition region. Res. Astron. Astrophys. 2010, vol. 10, iss. 6, pp. 529-532. DOI:https://doi.org/10.1088/1674-4527/10/6/002.
173. Soto-Chavez A.R., Lanzerotti L.J., Manweiler J.W., Gerrard A., Cohen R., Xia Z., et al. Observational evidence of the drift-mirror plasma instability in Earth’s inner magnetosphere. Physics of Plasmas. 2019, vol. 26, iss. 4. 042110. DOI:https://doi.org/10.1063/1.5083629.
174. Southwood D.J. Some features of field line resonances in the magnetosphere. Planetary and Space Sci. 1974, vol. 22, iss. 3, pp. 483-491. DOI:https://doi.org/10.1016/0032-0633(74)90078-6.
175. Srivastava A., Shetye J., Murawski K., Doyle J., Stangalini M., Scullion E., Ray T., Wójcik D., Dwivedi B. High-frequency torsional Alfvén waves as an energy source for coronal heating. Scientific Rep. 2017, vol. 7, article id. 43147. DOI:https://doi.org/10.1038/srep43147.
176. Stephenson J.A.E., Walker A.D.M. HF radar observations of Pc5 ULF pulsations driven by the solar wind. Geophys. Res. Lett. 2002, vol. 29, iss. 9, pp. 8-1-8-4. DOI:https://doi.org/10.1029/2001GL014291.
177. Sterling A.C. Solar Spicules: A review of recent models and targets for future observations. Solar Phys. 2000, vol. 196, iss. 1, pp. 79-111. DOI:https://doi.org/10.1023/A:1005213923962.
178. Takahashi K., Crabtree C., Ukhorskiy A.Y., Boyd A., Denton R.E., Turner D., et al. Van Allen Probes Observations of symmetric stormtime compressional ULF waves. J. Geophys. Res.: Space Phys. 2022, vol. 127. e2021JA030115. DOI:https://doi.org/10.1029/2021JA030115.
179. Thurgood J.O., Morton R.J., McLaughlin J.A. First direct measurements of transverse waves in solar polar plumes using SDO/AIA. Astrophys. J. Lett. 2014, vol. 790, iss. 1. L2. DOI:https://doi.org/10.1088/2041-8205/790/1/L2.
180. Trifonov V.D., Golovko A.A., Skomorovskiy V.I. Observations of the chromosphere in Baikal Astrophysical Observatory using CCD cameras. Proc. National Conference devoted to 90th Anniversary of V.E. Stepanov, Corresponding Member of RAS. 2004, pp. 178-180. (In Russian).
181. Troitskaya V.A., Guglielmi A.V. Geomagnetic pulsations and diagnostics of the magnetosphere. Soviet Physics Uspekhi. 1969, vol. 12, iss. 2, pp. 195-218. DOI:https://doi.org/10.1070/PU1969 v012n02ABEH003933.
182. Troitskaya V.A., Plyasova-Bakunina T.A., Gul’elmi A.V. The connection of Pc2-4 pulsations with the interplanetary magnetic field. Proc. Academy of Sciences. Math. Phys. 1971, vol. 197, iss. 6, pp. 1312-1314. (In Russian).
183. Uchida Y., Altschuler M.D., Newkirk Jr.G. Flare-produced coronal MHD-fast-mode wavefronts and Moreton’s wave phenomenon. Solar Phys. 1973, vol. 28, iss. 2, pp. 495-516. DOI:https://doi.org/10.1007/BF00152320.
184. Vaisberg O.L., Smirnov V.N. Near-Earth shock wave. Plasma Heliogeophysics. Eds. Zelenyi L.M., Veselovsky I.S. Moscow, Fizmatlit Publ., 2008, pp. 378-422. (In Russian).
185. van Doorsselaere T., Brady C.S., Verwichte E., Nakariakov V.M. Seismological demonstration of perpendicular density structuring in the solar corona. Astron. Astrophys. 2008, vol. 491, iss. 2, pp. L9-L12. DOI:https://doi.org/10.1051/0004-6361:200810659.
186. van Doorsselaere T., Verwichte E., Terradas J. The Effect of Loop Curvature on Coronal Loop Kink Oscillations. Space Sci Rev. 2009. Vol. 149. P. 299-324. DOI:https://doi.org/10.1007/s11214-009-9530-9.
187. Vetoulis G., Chen L. Global structures of Alfvén-ballooning modes in magnetospheric plasmas. Geophys. Res. Lett. 1994, vol. 21, pp. 2091-2094. DOI:https://doi.org/10.1029/94GL01703.
188. Volkov T.F. Hydrodynamic description of highly rarefied plasma. Plasma Phys. Eds. Leontovich M.A. 1964, vol. 4, pp. 3-19. Moscow, Gosatomizdat Publ., 1964. (In Russian).
189. Walker A.D.M., Greenwald R.A. Pulsation structure in the ionosphere derived from aurora radar data. ULF Pulsations in the Magnetosphere. Ed. D.J. Southwood. Dordrecht: Springer, 1981, pp. 111-127. DOI:https://doi.org/10.1007/978-94-009-8426-4_7.
190. Walker A.D.M, Greenwald R.A., Stuart W.F., Green C.A. Stare auroral radar observations of Pc 5 geomagnetic pulsations. J. Geophy. Res. 1979, vol. 84, iss. A7, pp. 3373-3388. DOI:https://doi.org/10.1029/JA084iA07p03373.
191. Wang Y.-M. EIT Waves and fast-mode propagation in the solar corona. Astrophys. J. 2000, vol. 543, iss. 1, p. L89. DOI:https://doi.org/10.1086/318178.
192. Wang Y.-M. Coronal Holes and Open Magnetic Flux. Space Sci. Rev. 2009, vol. 144, pp. 383-399. DOI:https://doi.org/10.1007/s11214-008-9434-0.
193. Wang T.J., Solanki S.K., Curdt W., Innes D.E., Dammasch I.E., Kliem B. Hot coronal loop oscillations observed with SUMER: Examples and statistics. Astron. Astrophys. 2003, vol. 406, iss. 3, pp. 1105-1121. DOI:https://doi.org/10.1051/0004-6361:20030858.
194. Weberg M.J., Morton R.J., McLaughlin J.A. An automated algorithm for identifying and tracking transverse waves in solar images. Astrophys. J. 2018, vol. 852, iss. 1, p. 57. DOI:https://doi.org/10.3847/1538-4357/aa9e4a.
195. Welling D.T., André M., Dandouras I., Delcourt D., Fazakerley A., Fontaine D., et al. The Earth: Plasma sources, losses, and transport processes. Space Sci. Rev. 2015, vol. 192, pp. 145-208. DOI:https://doi.org/10.1007/s11214-015-0187-2.
196. Wiegelmann T., Solanki S.K., Borrero J.M., Martínez Pillet V., del Toro Iniesta J.C., Domingo V., et al. Magnetic loops in the quiet Sun. Astrophys. J. Lett. 2010, vol. 723, pp. L185-L189. DOI:https://doi.org/10.1088/2041-8205/723/2/L185.
197. Yagova N., Heilig B., Fedorov E. Pc2-3 geomagnetic pulsations on the ground, in the ionosphere, and in the magnetosphere: MM100, CHAMP, and THEMIS observations. Ann. Geophys. 2015, vol. 33, iss. 1, pp. 117-128. DOI:https://doi.org/10.5194/angeo-33-117-2015.
198. Yamamoto T., Hayashi K., Kokubun S., Oguti T., Ogawa T. Auroral activities and long-period geomagnetic pulsations. I. Pc5 pulsations and concurrent auroras in the dawn sector. II. Ps5 pulsations following auroral breakup in the premidnight hours. J. Geomagnetism and Geoelectricity, 1988, vol. 40, iss. 5, pp. 553-569. DOI:https://doi.org/10.5636/jgg.40.553.
199. Yan Y., Chen Z., Wang W., Liu F., Geng L., Chen L., et al. Mingantu Spectral Radioheliograph for solar and space weather studies. Frontiers in Astron. and Space Sci. 2021, vol. 8, p. 20. DOI:https://doi.org/10.3389/fspas.2021.584043.
200. Yeoman T.K., James M., Mager P.N., Klimushkin D.Y. SuperDARN observations of high-m ULF waves with curved phase fronts and their interpretation in terms of transverse resonator theory. J. Geophys. Res.: Space Phys. 2012, vol. 117, iss. A6. A06231. DOI:https://doi.org/10.1029/2012JA017668.
201. Yumoto K. Characteristics of localized resonance coupling oscillations of the slow magnetosonic wave in a non-uniform plasma. Planetary Space Sci. 1985, vol. 33. pp. 1029-1036.
202. Zaitsev V.V., Stepanov A.V. On the origin of pulsations of type IV solar radio emission. Plasma cylinder oscillations (I). Research on Geomagnetism, Aeronomy and Solar Physics. 1975, iss. 37, pp. 3-10. (In Russian).
203. Zayer I., Solanki S.K., Stenflo J.O. The internal magnetic distribution and the diameters of solar magnetic elements. Astron. Astrophys. 1989, vol. 211, pp. 463-475.
204. Zelenyi L.M., Veselovsky I.S. Plasma Heliogeophysics. Moscow, Fizmatlit Publ., 2008. 672 p. (In Russian).
205. Zhang H., Ai G., Sakurai T., Kurokawa H. Fine structures of chromospheric magnetic field and material flow in a solar active region.Solar Phys. 1991, vol. 136, iss. 2, pp. 269-293. DOI:https://doi.org/10.1007/BF00146536.
206. Zheleznyakov V.V., Zlotnik E.Y. Thermal cyclotron radiation from solar active regions. Intern. Symposium Astron. Union. 1980, vol. 86, pp. 87-99.
207. Zong Q. Magnetospheric response to solar wind forcing: ULF wave - particle interaction perspective. Ann. Geophys. 2022, vol. 40, iss.1, pp. 121-150, DOI:https://doi.org/10.5194/angeo-40-121-2022.
208. Zong Q.-G., Zhou X.-Z., Wang Y.F., Li X., Song P., Baker D.N., et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J. Geophys. Res. 2009, vol. 114, A10204. DOI:https://doi.org/10.1029/2009JA 014393.
209. Zong Q.-G, Rankin R., Zhou X. The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earth’s magnetosphere. Rev. Modern Plasma Phys. 2017, vol. 1, p. 10. DOI:https://doi.org/10.1007/s41614-017-0011-4.
210. URL: https://www.nasa.gov/feature/goddard/2021/nasa-enters-the-solar-atmosphere-for-the-first-time-bringing-new-discoveries (accessed February 8, 2022).
211. URL: http://ckp-rf.ru/ckp/3056 (accessed February 8, 2022).