Schmidt Institute of Physics of the Earth, RAS
Moscow, Russian Federation
Moskva, Russian Federation
Schmidt Institute of Physics of the Earth, RAS
Geophysical Center RAS
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
We have analyzed geomagnetic variations in the 2.5–12 Hz frequency range in the ionospheric F layer above the electron density maximum, using data from two SWARM satellites. The analysis is based on the data obtained under weak and moderate magnetic activity for 12 days in September and December 2016. To separate spatial inhomogeneities from time variations of the magnetic field, we analyzed signal waveforms and cross-spectra in a 2.56 s sliding window. A maximum in the occurrence and power spectral density of the variations was found at latitudes above the polar boundary of the auroral oval, which correspond to the magnetospheric input layers and dayside polar cusp/cleft. Typical waveforms of the high-latitude variations are the wave packets lasting for 5–10 periods, recorded with a short time delay by two satellites spaced by 40–100 km. These variations might be the ionospheric manifestation of the electromagnetic ion-cyclotron waves generated at the non-equatorial magnetosphere near the polar cusp. The waveforms and cross-spectra of the variations are examined in more details for two cases with different spatial distributions of the magnetic field in the ionosphere. For the ionospheric conditions corresponding to event 1 (September 17, 80° geomagnetic latitude, afternoon sector), spatial distributions of wave magnetic field in the ionosphere and on Earth are estimated using a model of Alfvén beam with a finite radius incident on the ionosphere [Fedorov et al., 2018].
ionosphere, polar cusp, geomagnetic pulsations
1. Allen R.C., Zhang J.-C., Kistler L.M., Spence H.E., Lin R.-L., Klecker B., et al. A statistical study of EMIC waves observed by Cluster: 1. Wave properties. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 5574-5592. DOI:https://doi.org/10.1002/2015JA021333.
2. Allen R.C., Zhang J.-C., Kistler L.M., Spence H.E., Lin R.-L., Klecker B., et al. A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 6458-6479. DOI:https://doi.org/10.1002/2016JA022541.
3. Arnoldy R.L., Engebretson M.J., Denton R.E., Posch J.L., Lessard M.R., Maynard N.C., et al. Pc1 waves and associated unstable distributions of magnetospheric protons observed during a solar wind pressure pulse. J. Geophys. Res. 2005, vol. 110, A07229. DOI:https://doi.org/10.1029/2005JA011041.
4. Belyaev P.P., Bosinger T., Isaev S.V., Trakhtengerts V.Y., Kangas J. First evidence at high latitude for the ionospheric Alfvén resonator. J. Geophys. Res. 1999, vol. 104, pp. 4305-4318.
5. Bilitza D., Reinisch B. International Reference Ionosphere. Improvements and new parameters. Adv. Space Res. 2008, vol. 42, pp. 599-609. DOI:https://doi.org/10.1016/j.asr.2007.07.048.
6. Blum L.W., MacDonald E.A., Gary S.P., Thomsen M.F., Spence H.E. Ion observations from geosynchronous orbit as a proxy for ion cyclotron wave growth during storm times. J. Geophys. Res. 2009, vol. 114, A10214. DOI:https://doi.org/10.1029/2009JA 014396.
7. Bogdanova Y.V., Fazakerley A.N., Owen C.J., Klecker B., Cornilleau-Wehrlin N., Grison B., et al. Correlation between suprathermal electron bursts, broadband extremely low frequency waves, and local ion heating in the midaltitude cleft/low-latitude boundary layer observed by Cluster. J. Geophys. Res. 2004, vol. 109, A12226. DOI:https://doi.org/10.1029/2004JA010554.
8. Buchsbaum S.J. Ion resonance in a multicomponent plasma. Phys. Rev. Lett. 1960, vol. 5, no. 11, pp. 495-497. DOI:https://doi.org/10.1103/PhysRevLett.5.495.
9. Engebretson M.J., Onsager T.G., Rowland D.E., Denton R.E., Posch J.L., Russell C.T., et al. On the source of Pc1-2 waves in the plasma mantle. J. Geophys. Res. 2005, vol. 110, A06201. DOI:https://doi.org/10.1029/2004JA010515.
10. Engebretson M.J., Posch J.L., Westerman A.M., Otto N.J., Slavin J.A., Le G., et al. Temporal and spatial characteristics of Pc1 waves observed by ST5. J. Geophys. Res. 2008, vol. 113, A07206. DOI:https://doi.org/10.1029/2008 JA013145.
11. Ermakova E.N., Yakhnin A.G., Yakhnina T.A., Demekhov A.G., Kotik D.S. Sporadic geomagnetic pulsations at frequencies up to15 Hz in the magnetic storm of November 7-14, 2004: features of the amplitude and polarization spectra and their connection with ion-cyclotron wave in the magnetooshhere. Radiophys Quantum El. 2016, vol. 58, pp. 547-560. DOI:https://doi.org/10.1007/s11141-016-9628-3.
12. Fedorov E.N., Pilipenko V.A., Engebretson M.J., Hartinger M.D. Transmission of a magnetospheric Pc1 wave beam through the ionosphere to the ground. J. Geophys. Res.: Space Phys. 2018, vol. 123, pp. 3965-3982.DOI:https://doi.org/10.1029/2018JA025338.
13. Feldstein Y.I. On Morphology and Auroral and Magnetic Disturbances at High Latitudes. Geomagnetism and Aeronomy. 1963, vol. 3, p. 138.
14. Francia P., Regi M., de Lauretis M., Pezzopane M., Cesaroni C., Spogli L., Raita T. A case study of correspondence between Pc1 activity and ionospheric irregularities at polar latitudes. Earth Planets Space. 2020, vol. 72, 59. DOI:https://doi.org/10.1186/s40623-020-01184-4.
15. Guglielmi A.V., Potapov A.S., Dovbnya B.V. On the origin of frequency modulation of serpentine emission. Solar-Terr. Phys. 2015, vol. 1, pp. 85-90.
16. Holzworth R.H., Meng C.-I. Mathematical representation of the auroral oval. Geophys. Res. Lett. 1975, vol. 2, pp. 377-380.DOI:https://doi.org/10.1029/GL002i009p00377.
17. Jacobsen K.S., Moen J.I. On the correlation between broad-band ELF wave power and ion fluxes in the cusp. Ann. Geophys. 2010, vol. 28, pp. 1249-1261. DOI:https://doi.org/10.5194/angeo-28-1249-2010.
18. Jenkins G., Watts D. Spectral analysis and its applications, Holden-Day, San Francisco, London, Amsterdam, 1969, 525 p.
19. Juusola L., Kauristie K., Vanhamäki H., Aikio A., van de Kamp M. Comparison of auroral ionospheric and field-aligned currents derived from Swarm and ground magnetic field measurements. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 9256-9283. DOI:https://doi.org/10.1002/2016JA022961.
20. Kataoka R., Fukunishi H., Lanzerotti L.J. Statistical identification of solar wind origins of magnetic impulse events. J. Geophys. Res. 2003, vol. 108, iss. A12, p. 1436. DOI: 10.1029/ 2003JA010202.
21. Kim H., Lessard M.R., Engebretson M.J., Young M.A. Statistical study of Pc1-2 wave propagation characteristics in the high-latitude ionospheric waveguide. J. Geophys. Res. 2011, vol. 116, A07227. DOI:https://doi.org/10.1029/2010JA016355.
22. Kim H., Shiokawa K., Park J., Miyoshi Y., Stolle C., Buchert S. Statistical analysis of Pc1 wave ducting deduced from Swarm satellites. J. Geophys. Res.: Space Phys. 2021, vol. 126, e2020JA029016. DOI:https://doi.org/10.1029/2020JA029016.
23. Lanzerotti L.J., Konik R.M., Wolfe A., Venkatesan D., Maclennan C.G. Cusp latitude magnetic impulse events, 1, Occurrence statistics. J. Geophys. Res. 1991, vol. 96, pp. 14009-14022.
24. Le Queau D., Roux A. Heating of Oxygen Ions by Resonant Absorption of Alfvén Waves in a Multicomponent Plasma. J. Geophys. Res. 1992, vol. 97, pp. 14929-14946. DOI:https://doi.org/10.1029/92JA01052.
25. Le G., Chi P.J., Strangeway R.J., Slavin J.A. Observations of a unique type of ULF wave by low-altitude Space Technology 5 satellites. J. Geophys. Res. 2011, vol. 116, iss. A08. DOI:https://doi.org/10.1029/2011JA016574.
26. Leonovich A.S., Mazur V.A., Senatorov V.N. Alfvén waveguide. Zh. Eksp. Teor. Fiz. 1983, vol. 85, pp. 141-145.
27. Liu S., Xia Z., Chen L., Liu Y., Liao Z., Zhu H. Magnetospheric Multiscale Observation of quasiperiodic EMIC waves associated with enhanced solar wind pressure. Geophys. Res. Lett. 2019, vol. 46, pp. 7096-7104. DOI:https://doi.org/10.1029/2019GL083421.
28. Loto'aniu T.M., Fraser B.J., Waters C.L. Propagation of electromagnetic ion cyclotron wave energy in the magnetosphere. J. Geophys. Res. 2005, vol. 110, iss. A07. DOI: 10.1029/ 2004JA010816.
29. Lühr H., Park J., Gjerloev J.W., Rauberg J., Michaelis I.G. Merayo J.M., Brauer P. Field-aligned currents' scale analysis performed with the Swarm constellation. Geophys. Res. Lett. 2015, vol. 42, pp. 1-8. DOI:https://doi.org/10.1002/2014GL062453.
30. Mazur N.G., Fedorov E., Pilipenko V.A., Vakhnina V. ULF electromagnetic field in the upper ionosphere excited by lightning. J. Geophys. Res.: Space Phys. 2018, vol. 123, pp. 6692-6702. DOI:https://doi.org/10.1029/2018JA025622.
31. McCollough J.P., Elkington S.R., Usanova M.E., Mann I.R., Baker D.N., Kale Z.C. Physical mechanisms of compressional EMIC wave growth. J. Geophys. Res. 2010, vol. 115, A10214, DOI:https://doi.org/10.1029/2010JA015393.
32. McCollough J.P., Elkington S.R., Baker D.N. The role of Shabansky orbits in compression-related electromagnetic ion cyclotron wave growth. J. Geophys. Res. 2012, vol. 117, A01208. DOI:https://doi.org/10.1029/2011JA016948.
33. Mikhailova O.S., Klimushkin D.Yu., Mager P.N. The current state of the theory of Pc1 range ULF pulsations in magnetospheric plasma with heavy ions: a review. Solar-Terrestrial Physics. 2022, vol. 8, iss. 1, pp. 3-18.
34. Newell P.T., Sotirelis T., Ruohoniemi J.M., Carbary J.F., Liou K., Skura J.P., et al. OVATION: Oval variation, assessment, tracking, intensity, and online nowcasting. Ann. Geophys. 2002, vol. 20, pp. 1039-1047. DOI:https://doi.org/10.5194/angeo-20-1039-2002.
35. Newell P.T., Sotirelis T., Liou K., Lee A.R., Wing S., Green J., Redmon R. Predictive ability of four auroral precipitation models as evaluated using Polar UVI global images. Space Weather. 2010, vol. 8, S12004. DOI: 10.1029/ 2010SW000604.
36. Ni B.-B., Zhao Z.-Yu. Spatial observations of Schumann resonance at the ionospheric altitude. Chinese Journal of Geophysics. 2005, vol. 48, pp. 818-826.
37. Nykyri K., Grison B., Cargill P.J., Lavraud B., Lucek E., Dandouras I., et al. Origin of the turbulent spectra in the high-altitude cusp: Cluster spacecraft observations. Ann. Geophys. 2006, vol. 24, pp. 1057-1075. DOI:https://doi.org/10.5194/angeo-24-1057-2006.
38. Olsen N., Friis-Christensen E., Floberghagen R., Alken P., Beggan C.D., Chulliat A., et al. The Swarm satellite constellation application and research facility (SCARF) and Swarm data products. Earth Planets Space. 2013, vol. 64, P. 1189-1200. DOI:https://doi.org/10.5047/eps.2013.07.001.
39. Papitashvili V.O., Papitashvili N.E., King J.H. Magnetospheric geomagnetic coordinates for space physics data presentation and visualization. Adv. Space Res. 1997, vol. 20, pp. 1097-1100. DOI:https://doi.org/10.1016/S0273-1177(97)00565-6.
40. Parkhomov V.A., Zastenker G.N., Riazantseva M.O., Tsegmed B., Popova T.A. Bursts of geomagnetic pulsations in the frequency range 0.2-5 Hz excited by large changes of the solar wind pressure. Cosmic Res. 2010, vol. 48, pp. 86-100. DOI:https://doi.org/10.1134/S0010952510010077.
41. Parkhomov V.A., Dovbnya B.V., Borodkova N.A., Safargaleyev V.V., Pashinin A.Yu. Pulse bursts of geomagnetic pulsations in the frequency range of 0.2-7 Hz as a first signal of interaction between interplanetary shock waves and the magnetosphere. Solar-Terrestrial Physics. 2014, no. 25(138), pp. 21-28. (In Russian).
42. Pilipenko V.A., Polozova T.L., Engebretson M. Space-time structure of ion-cyclotron waves in the topside ionosphere as observed onboard the ST-5 satellites. Cosmic Res. 2012, vol. 50, pp. 329-339. DOI:https://doi.org/10.1134/S0010952512050048.
43. Polyakov S.V., Rapoport V.O. Ionospheric Alfvén resonator. Geomagnetism and Aeronomy. 1981, vol. 21, pp. 816-822.
44. Rakov V.A., Uman M.A. Lightning: Physics and Effects. Cambridge U. Press, New York, 2003, 687 p.
45. Rème H., Aoustin C., Bosqued J.M., Dandouras I., Lavraud B., Sauvaud J.A., Barthe A., Bouyssou J., Camus Th., et al. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 2001, vol. 19, iss.10-12, pp. 1303-1354. DOI:https://doi.org/10.5194/angeo-19-1303-2001.
46. Sagdeev R.Z., Shafranov V.D. On the instability of the plasma with an anisotropic distribution of velocities in a magnetic field. Soviet Phys. JETP. 1961, vol. 12, pp. 130-132.
47. Sato M., Fukunishi H., Lanzerotti L.J., Maclennan C.G. Magnetic impulse events and related Pc1 bursts observed by the Automatic Geophysical Observatories network in Antarctica. J. Geophys. Res. 1999, vol. 104, pp. 19971-19982. DOI:https://doi.org/10.1029/1999JA900111.
48. Shabansky V.P. Some processes in the magnetosphere. Space Sci. Rev. 1971, vol. 12, P. 299-418. DOI:https://doi.org/10.1007/BF00165511.
49. Simões F., Pfaff R.F., Freudenreich H. Observation of Schumann resonances in the Earth’s ionosphere. Geophys. Res. Lett. 2011, vol. 38, L22101. DOI:https://doi.org/10.1029/2011GL049668.
50. Slavin J.A., Le G., Strangeway R.J., Wang Y., Boardsen S.A., Moldwin M.B., E. Spence H. Space Technology 5 multi-point measurements of near-Earth magnetic fields: Initial results. Geophys. Res. Lett. 2008, vol. 35, L02107. DOI:https://doi.org/10.1029/2007GL031728.
51. Surkov V.V., Nosikova N.S., Plyasov A.A., Pilipenko V.A., Ignatov V.N. Penetration of Schumann resonances into the upper ionosphere. J Atmos. Solar-Terr. Phys. 2013, vol. 97, pp. 65-74. DOI:https://doi.org/10.1016/j.jastp.2013.02.015.
52. Usanova M.E., Mann I.R., Bortnik J., Shao L., Angelopoulos V. THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYM-H, and solar wind dynamic pressure. J. Geophys. Res. 2012, vol. 117, A10218. DOI:https://doi.org/10.1029/2012JA018049.
53. Vines S.K., Allen R.C., Anderson B.J., Engebretson M.J., Fuselier S.A., Russell C.T., et al. EMIC waves in the outer magnetosphere: Observations of an offequator source region. Geophys. Res. Lett. 2019, vol. 46, pp. 5707-5716. DOI:https://doi.org/10.1029/2019GL082152.
54. URL: https://swarm-diss.eo.esa.int (accessed November 16, 2022).
55. URL: https://cdaweb.gsfc.nasa.gov (accessed November 16, 2022).