DIFFERENCES IN THE RESPONSE TO CME AND CIR DRIVERS OF GEOMAGNETIC DISTURBANCES
Abstract and keywords
Abstract (English):
Utilizing 1-minute resolution data on the geomagnetic indices SYM-H, AE, solar wind parameters (velocity Vsw and density Np), and z-component Bz of the interplanetary magnetic field (IMF) during solar cycles 23 and 24, we have statistically analyzed the correlations between geomagnetic activity (storms and substorms), Vsw, Np, Bz, and energy coupling functions of solar wind and Earth’s magnetosphere. For the selected 131 CME-driven storms, SYM-H stronger depends on Vsw and B than other parameters, whereas the selected 161 CIR-driven storms have nearly the same dependence on the solar wind electric field, the rate of open magnetic flux dφ/dt, and the reconnection electric field Ekl. Thus, the solar wind electric field and the dayside magnetic reconnection are likely to have different contributions for storms of the two types. During storms of different types, the substorm intensity AE relies mainly on the IMF Bz, rate of open magnetic flux and reconnection electric field.

Keywords:
solar wind, coronal mass ejections, corotating interaction regions, geomagnetic storms, magnetospheric substorms, correlations
Text
Text (PDF): Read Download
References

1. Akasofu S.I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 1981. Vol. 28. P. 121-190. DOI:https://doi.org/10.1007/BF00218810.

2. Alexakis P., Mavromichalaki H. Statistical analysis of interplanetary coronal mass ejections and their geoeffectiveness during the solar cycles 23 and 24. Astrophys Space Sci. 2019. Vol. 364, iss. 11. Article id. 187. 14 p. DOI:https://doi.org/10.1007/s10509-019-3677-y.

3. Badruddin B., Aslam O.P.M., Derouich M. Study of the development of geomagnetic storms in the magnetosphere using solar wind data of three different time resolutions. Astrophys. Space Sci. 2022. Vol. 367, iss. 1. Article id. 10. DOI: 10.1007/ s10509-021-04030-5.

4. Baker D.N., Pulkkinen T.I., Angelopoulos V., et al. Neutral line model of substorms: Past results and present view. J. Geophys. Res. 1996. Vol. 101, iss. A6. P. 12975-13010. DOI:https://doi.org/10.1029/95JA03753.

5. Borovsky J.E., Denton M.H. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 2006. Vol. 111, iss. A7. CiteID A07S08. DOI:https://doi.org/10.1029/2005JA011447.

6. Boroyev R.N., Vasiliev M.S. Relationship of the ASY-H index with interplanetary medium parameters and auroral activity in magnetic storm main phases during CIR and ICME events. Solar-Terr. Phys. 2020. Vol. 6, iss. 1. P. 35-40. DOI:https://doi.org/10.12737/stp-61202004.

7. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975. Vol. 80, iss. 31. P. 4204. DOI: 10.1029/ JA080i031p04204.

8. Cao J., Duan A., Reme H., Dandouras I. Relations of the energetic proton fluxes in the central plasma sheet with solar wind and geomagnetic activities. J. Geophys. Res.: Space Phys. 2013. Vol. 118. P. 7226-7236. DOI:https://doi.org/10.1002/2013JA019289.

9. Du A.M., Tsurutani B.T., Sun W. Anomalous geomagnetic storm of 21-22 January 2005: A storm main phase during northward IMFs. J. Geophys. Res. 2008. Vol. 113, iss. A10. CiteID A10214. DOI:https://doi.org/10.1029/2008JA013284.

10. Duan S.P., Liu Z.X., Liang J., et al. Multiple magnetic dipolarizations observed by THEMIS during a substorm. Ann. Geophys. 2011. Vol. 29. P. 331-339. DOI:https://doi.org/10.5194/angeo-29-331-2011.

11. Gonzalez W.D., Joselyn J.A., Kamide Y., et al. What is a geomagnetic storm? J. Geophys. Res.: Space Phys. 1994. Vol. 99, iss. A4. P. 5771-5792. DOI:https://doi.org/10.1029/93JA02867.

12. Gonzalez W.D., Tsurutani B.T., Gonzalez A.L.C. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999. Vol. 88. P. 529-562. DOI:https://doi.org/10.1023/A:1005160129098.

13. He Z., Dai L., Wang C., et al. Contributions of substorm injections to SYM-H depressions in the main phase of storms. J. Geophys. Res.: Space Phys. 2016. Vol. 121. P. 11729-11736. DOI:https://doi.org/10.1002/2016JA023218.

14. Kan J.R., Lee L.C. Energy coupling function and solar wind-magnetosphere dynamo. Geophys. Res. Lett. 1979. Vol. 6, iss. 7. P. 577-580. DOI:https://doi.org/10.1029/GL006i007p00577.

15. Kataoka R., Watari S., Shimada N., et al. Downstream structures of interplanetary fast shocks associated with coronal mass ejections. Geophys. Res. Lett. 2005. Vol. 32, iss. 12. CiteID L12103. DOI:https://doi.org/10.1029/2005GL022777.

16. Katus R.M., Liemohn M.W., Ionides E.L., et al. Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity. J. Geophys. Res.: Space Phys. 2015. Vol. 120. P. 310-327. DOI: 10.1002/ 2014JA020712.

17. Le G.M., Cai Z.Y., Wang H.N., Zhu Y.T. Solar cycle distribution of great geomagnetic storms. Astrophys Space Sci. 2012. Vol. 339. P. 151-156. DOI:https://doi.org/10.1007/s10509-011-0960-y.

18. Li L.Y., Wang Z.Q. The effects of solar wind dynamic pressure changes on the substorm auroras and energetic electron injections on 24 August 2005. J. Geophys. Res.: Space Phys. 2018. Vol. 123. P. 385-399. DOI:https://doi.org/10.1002/2017JA024628.

19. Li L.Y., Cao J.B., Zhou G.C. Relation between the variation of geomagnetospheric relativistic electron flux and storm/substorm. Chinese J. Geophys. 2006. Vol. 49. P. 9-15.

20. Li L.Y., Cao J.B., Zhou G.C., Li X. Statistical roles of storms and substorms in changing the entire outer zone relativistic electron population. J. Geophys. Res. 2009. Vol. 114, iss. A12. CiteID A12214. DOI:https://doi.org/10.1029/2009JA014333.

21. Li L.Y., Yu J., Cao J.B., et al. Roles of whistler mode waves and magnetosonic waves in changing the outer radiation belt and the slot region. J. Geophys. Res.: Space Phys. 2017. Vol. 122. P. 5431-5448. DOI:https://doi.org/10.1002/2016JA023634.

22. Li L.Y., Zhou S.P., Wei S.H., et al. The day-night difference and geomagnetic activity variation of energetic electron fluxes in region of South Atlantic anomaly. Space Weather. 2020. Vol. 18, iss. 9. e2020SW002479. DOI:https://doi.org/10.1029/2020SW002479.

23. Liemohn M.W., Jazowski M., Kozyra J.U., et al. CIR versus CME drivers of the ring current during intense magnetic storms. Proc. Royal Society. London, Ser. A. 2010. Vol. 466. P. 3305-3328. DOI:https://doi.org/10.1098/rspa.2010.0075.

24. Lui A.T.Y., McEntire R.W., Baker K.B. A new insight on the cause of magnetic storms. Geophys. Res. Lett. 2001. Vol. 28. P. 3413-3416. DOI:https://doi.org/10.1029/2001GL013281.

25. Newell P.T., Sotirelis T., Liou K., et al. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 2007. Vol. 112, iss. A1. CiteID A01206. DOI:https://doi.org/10.1029/2006JA012015.

26. Perrault P., Akasofu S.I. A study of geomagnetic storms. Geophys. J. Intern. 1978. Vol. 54. P. 547-573. DOI: 10.1111/ j.1365-246X.1978.tb05494.x.

27. Richardson I.G., Cliver E.W., Cane H.V. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972-2000. Geophys Res Lett. 2001. Vol. 28. P. 2569-2572. DOI:https://doi.org/10.1029/2001GL013052.

28. Tsurutani B.T., Gonzalez W.D. The interplanetary causes of magnetic storms: a review. Magnetic Storms. 1997. Vol. 98. P. 77. AGU Press, Washington D.C. DOI:https://doi.org/10.1029/GM098p 0077.

29. Tsurutani B.T., Gonzalez W.D., Gonzalez A.L.C., et al. Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 2006. Vol. 111, iss. A7. CiteID A07S01. DOI:https://doi.org/10.1029/2005JA011273.

30. Turner N.E., Cramer W.D., Earles S.K., Emery B.A. Geo- efficiency and energy partitioning in CIR-driven and CME-driven storms. J. Atmos. Solar-Terr. Phys. 2009. Vol. 71, iss. 10-11. P. 1023-1031. DOI:https://doi.org/10.1016/j.jastp.2009.02.005.

31. Verbanac G., Vršnak B., Živković S., et al. Solar wind high-velocity streams and related geomagnetic activity in the declining phase of solar cycle 23. Astron. Astrophys. 2011. Vol. 533. Id. A49. 6 p. DOI:https://doi.org/10.1051/0004-6361/201116615.

32. Wanliss J.A., Showalter K.M. High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. 2006. Vol. 111, iss. A2. CiteID A02202. DOI:https://doi.org/10.1029/2005ja011034.

33. Yermolaev Yu.I., Lodkina I.G., Nikolaeva N.S., et al. Statistic study of the geoeffectiveness of compression regions CIRs and Sheaths. J. Atmos. Solar-Terr. Phys. 2018. Vol. 180. P. 52-59. DOI:https://doi.org/10.1016/j.jastp.2018.01.027.

34. Zhang Y., Sun W., Feng X.S., et al. Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23. J. Geophys. Res. 2008. Vol. 113, iss. A8. CiteID A08106. DOI:https://doi.org/10.1029/2008JA013095.

35. Zhao M.X., Le G.M., Lu J.Y. Can we estimate the intensities of great geomagnetic storms (ΔSYM-H≤-200 nT) with the burton equation or the O’Brien and McPherron equation? Astrophys. J. 2022. Vol. 928. P. 18. DOI:https://doi.org/10.3847/1538-4357/ac50a8.

36. URL: https://omniweb.gsfc.nasa.gov/form/omni_min.html (accessed April 6, 2023).

37. URL: https://www.sidc.be/ silso/datafiles (accessed April 6, 2023).

38. URL: https://www.ngdc.noaa.gov/stp/geomag/geoib.html (accessed April 6, 2023).

39. URL: https://isgi.unistra.fr/events_sc.php (accessed April 6, 2023).

40. URL: https://omniweb.gsfc.nasa.gov/ow.html (accessed April 6, 2023).

Login or Create
* Forgot password?