Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
For incoherent scatter measurements, the effective subtraction technique is to alternate the duration of amplitude-modulated signals between a pair of consequently radiated pulses. The resulting gain of spatial resolution enables us to steadily assess the electron density profile by the Faraday rotation method. The paper describes the electron density measurement technique, which involves analyzing narrow-band signals from Irkutsk Incoherent Scatter Radar, and proposes an automated method of determining the electron density for the problem in which the convolution of the radiated signal waveform with backscatter signal cannot be neglected. The inverse problem of electron density recovery is considered as a standard nonlinear optimization problem, which is solved using the algorithms for global and local optimization applied consequently. We compare the electron density profiles obtained by analyzing different pulse waveforms and from Irkutsk ionosonde data.
Irkutsk Incoherent Scatter Radar, effective subtraction technique, plasma density recovery, Faraday effect, optimization algorithms
1. Alsatkin S.S., Medvedev A.V., Ratovsky K.G. Features of Ne recovery at the Irkutsk Incoherent Scatter Radar. Solar-Terr. Phys. 2020, vol. 6, pp. 77-88. DOI:https://doi.org/10.12737/stp-61202009.
2. Berngardt O.I., Kushnarev D.S. Effective subtraction technique at the Irkutsk Incoherent Scatter Radar: Theory and experiment. J. Solar-Terr. Phys. 2013, vol. 105-106, pp. 293-298. DOI:https://doi.org/10.1016/j.jastp.2013.03.023.
3. Farley D.T. Faraday Rotation Measurements Using Incoherent Scatter. Radio Sci. 1969, vol. 4, iss. 2, pp. 143-152.
4. Farley D.T. Multiple pulse incoherent scatter correlation function measurements. Radio Sci. 1972, vol. 7, iss. 6, pp. 661-666.
5. Lehtinen M.S., Haggstrom I. A new modulation principle for incoherent scatter measurements. Radio Sci. 1987, vol. 22, iss. 4, pp. 625-634.
6. Potekhin A.P., Medvedev A.V., Zavorin A.V., Kushnarev D.S., Lebedev V.P., Lepetaev V.V., Shpynev B.G. Recording and control digital systems of the Irkutsk Incoherent Scatter Radar. Geomagnetism and Aeronomy. 2009, Vol. 49, pp. 1011-1021.
7. Powell M.J.D. A direct search optimization method that models the objective and constraint functions by linear interpolation. Advances in Optimization and Numerical Analysis. 1994, pp. 51-67. DOI:https://doi.org/10.1007/978-94-015-8330-5_4.
8. Powell M.J.D. Direct search algorithms for optimization calculations. Acta Numerica. 1998, vol. 7, pp. 287-336. DOI:https://doi.org/10.1017/S0962492900002841.
9. Runarsson T.P., Xin Yao. Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation. 2000, vol. 4, iss. 3, pp. 284-294. DOI:https://doi.org/10.1109/4235.873238.
10. Runarsson T.P., Xin Yao. Search biases in constrained evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2005, vol. 5, iss. 2, pp. 233-243. DOI:https://doi.org/10.1109/TSMCC. 2004.841906.
11. Shpynev B.G. Incoherent scatter Faraday rotation measurements on a radar with single linear polarization. Radio Sci. 2001, vol. 39, iss. 3. DOI:https://doi.org/10.1029/2001RS002523.
12. URL: http://github.com/stevengj/nlopt (accessed October 12, 2022).
13. URL: http://ckp-rf.ru/ckp/3056/ (accessed October 12, 2022).
14. URL: http://ckp-rf.ru/usu/77733/ (accessed October 12, 2022)