Arctic and Antarctic Research Institute
St. Petersburg, Russian Federation
St. Petersburg, Russian Federation
St. Petersburg, Russian Federation
We present experimental results from the studies of large-scale inhomogeneities along the external magnetic field with increased electron density, electron temperature, and excitation of elongated plasma waves (Langmuir and ion-acoustic), induced by the ordinary (O-mode) and extraordinary (X-mode) HF heating near the F2-layer critical frequency, in the high-latitude ionospheric F-region. The experiments have been carried out at the EISCAT/Heating facility (Tromsø, Norway). Powerful HF radio waves radiated towards the magnetic zenith through a step change in the effective radiated power at frequencies fH near and below the F2-layer critical frequency fₒF2. The EISCAT incoherent scatter radar (930 MHz), co-located with the EISCAT/Heating facility, was utilized for diagnostics of ionospheric modification effects. We calculated the electric field of a powerful HF radio wave near the reflection altitude, taking into account the non-deflective absorption along the propagation path. We determined the conditions for electric field generation and its threshold (minimum) values required for electron density enhancements in a wide altitude range, excitation of Langmuir and ion-acoustic plasma waves under fH~fₒF2 and fH
high-latitude ionosphere, F-region, powerful HF radio wave, electric field, electron density enhancement, Langmuir wave, ion-acoustic wave, incoherent scatter radar, EISCAT
1. Blagoveshchenskaya N.F. Perturbing the high-latitude upper ionosphere (F region) with powerful HF radio waves: A 25-year collaboration with EISCAT. URSI Radio Science Bulletin. 2020, vol. 373, pp. 40-55. DOI:https://doi.org/10.23919/URSIRSB.2020.9318436.
2. Blagoveshchenskaya N.F., Borisova T.D., Kosch M., Sergienko T., Brändström U., Yeoman T.K., Häggström I. Optical and ionospheric phenomena at EISCAT under continuous X-mode HF pumping. J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 10483-10498. DOI:https://doi.org/10.1002/2014JA020658.
3. Blagoveshchenskaya N.F., Borisova T.D., Kalishin A.S., Kayatkin V.N., Yeoman T.K., Häggström I. Comparison of the effects induced by the ordinary (O-mode) and extraordinary (X-mode) polarized powerful HF radio waves in the high-latitude ionospheric F region. Cosmic Research. 2018, vol. 56, no. 1, pp. 11-25. DOI:https://doi.org/10.1134/S0010952518010045.
4. Blagoveshchenskaya N.F., Borisova T.D., Kalishin A.S., Schmelev Y.A., Leonenko E.E., Yeoman T.K. Characterization of artificial, small-scale, ionospheric irregularities in the high-latitude F region induced by high-power, high-frequency radio waves of extraordinary polarization. Geomagnetism and Aeronomy. 2019, vol. 59, no. 6, pp. 713-725. DOI:https://doi.org/10.1134/S00 16793219060045.
5. Blagoveshchenskaya N.F., Borisova T.D., Kalishin A.S., Yeoman T.K., Häggström I. Distinctive features of Langmuir and ion-acoustic turbulences induced by O- and X-mode HF pumping at EISCAT. J. Geophys. Res.: Space Phys. 2020, vol. 125, e2020JA028203. DOI:https://doi.org/10.1029/2020JA028203.
6. Blagoveshchenskaya N.F., Borisova T.D., Kalishin A.S., Egorov I.M., Zagorskiy G.A. Disturbances of electron density in the high latitude upper (F-region) ionosphere induced by X-mode HF pump waves from EISCAT UHF radar observations. Arctic and Antarctic Research. 2022, vol. 68, no. 3, pp. 248-257. DOI:https://doi.org/10.30758/0555-2648-2022-68-3-248-257.
7. Borisova T.D., Blagoveshchenskaya N.F., Kalishin A.S., Rietveld M.T., Yeoman T.K., Häggström I. Modification effects of the high-latitude ionospheric F region by high-power HF radio waves at frequencies near the fifth and sixth electron gyroharmonics. Izvvestiya vuzov. Radiofizika. [Radiophysics and Quantum Electronics]. 2015, vol. 58, no. 8, pp. 623-650. (In Russian).
8. Borisova T.D., Blagoveshchenskaya N.F., Yeoman T.K., Häggström I. Excitation of artificial ionospheric turbulences in the high-latitude ionospheric F region as a function of the EISCAT/Heating effective radiated power. Izvvestiya vuzov. Radiofizika. [Radiophysics and Quantum Electronics]. 2017. vol. 60, no. 4, pp. 305-325. (In Russian).
9. Borisova T.D., Blagoveshchenskaya N.F., Rietveld M.T., Häggström I. Outshifted plasma lines observed in heating experiments in the high-latitude ionosphere at pump frequencies near electron gyroharmonics. Izvvestiya vuzov. Radiofizika. [Radiophysics and Quantum Electronics]. 2018, vol. 61, no. 10, pp. 810-830. (In Russian).
10. Carlson H.C., Wickwar V.B., Mantas G.P. Observations of fluxes of suprathermal electrons accelerated by HF excited instabilities. J. Atmos. Terr. Phys. 1982, vol. 44, pp. 1089-1100.
11. Carlson H.C., Jensen J.B. HF accelerated electron fluxes, spectra, and ionization. Earth, Moon, and Planets. 2014, vol. 116, pp. 1-18. DOI:https://doi.org/10.1007/s11038-014-9454-6.
12. Carlson H.C., Djuth F.T., Zhang L.D. Creating space plasma from the ground. J. Geophys. Res.: Space Phys. 2016, vol. 122, pp. 978-999. DOI:https://doi.org/10.1002/2016JA023880.
13. Djuth F.T., DuBois D.F. Temporal development of HF-excited Langmuir and ion turbulence at Arecibo. Earth Moon Planets. 2015, vol. 116, pp. 19-53. DOI:https://doi.org/10.1007/s11038-015-9458-x.
14. Du Bois D.F., Rose H.A., Russell D. Excitation of strong Langmuir turbulence in plasmas near critical density: Application to HF heating of the ionosphere. J. Geophys. Res. 1990, vol. 95, pp. 21221-21272.
15. Davies K. Ionospheric Radio Waves. Moscow, Mir Publ., 1973. 504 p. (In Russian). (English edition: Davies K. Ionospheric Radio Waves. Blaisdell Publishing Company, 1969, 460 p.)
16. Frolov V.L., Bakhmet'eva N.V., Belikovich V.V., Vertogradov G.G., Vertogradov V.G., Komrakov G.P., et al. Modification of Earth's ionosphere by powerful HF radiation. Physics-Uspekhi. 2007, vol. 50, no. 3, p. 315. DOI:https://doi.org/10.1070/PU2007v050n03ABEH006282.
17. Frolov V.L., Rapoport V.O., Komrakov G.P., Belov A.S., Markov G.A., Parrot M., Rauch J.L., Mishin E.V. Density ducts formed by heating the Earth’s ionosphere with high-power HF radio waves. Pis’ma v Zh. `Eksper. Teoret. Fiz. [JETP Letters]. 2008, vol. 88, iss. 12, pp. 908-913. (In Russian).
18. Ginzburg V.L. The Propagation of Electromagnetic Waves in Plasma. Moscow, Nauka Publ., 1967. 684 p. (In Russian). (English edition: Ginzburg V.L. The Propagation of Electromagnetic Waves in Plasma. Pergamon Press, 1970, 615 p.)
19. Grach S.M., Karashtin A.N., Mityakov N.A., Rapoport V.O., Trakhtengerts V.Yu. Parametric interaction between electromagnetic radiation and ionospheric plasma. Izvestya vuzov. Radiofizika. [Radiophysics and Quantum Electronics]. 1977, vol. 20, pp. 1827-1833. (In Russian).
20. Grach S.M. On kinetic effects in the ionospheric F-region modified by powerful radio waves. Radiophysics and Quantum Electronics. 1999, vol. 42, no. 7, pp. 572-588. DOI:https://doi.org/10.1007/BF02677563.
21. Grach S.M., Sergeev E.N., Mishin E.V., Shindin A.V. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves. Physics-Uspekhi. 2016, vol. 59, no. 11, 1091 DOI:https://doi.org/10.3367/UFNe.2016.07.037868.
22. Gurevich A.V. Nonlinear effects in the ionosphere. Physics-Uspekhi. 2007, vol. 50, no. 11, 1091. DOI:https://doi.org/10.1070/PU2007 v050n11ABEH006212.
23. Isham B., Kofman V., Hagfors T., Nordling J., Thidé B., LaHoz C., Stubbe P. New phenomena observed by EISCAT during an RF ionospheric modification experiment. Radio Sci. 1990, vol. 25, no. 3, pp. 251-262.
24. Kuo S.P. Cascade of the parametric decay instability in ionospheric heating experiments. J. Geophys. Res.: Space Phys. 2001, vol. 106, pp. 5593-5597.
25. Kuo S.P., Lee M.C. Cascade spectrum of HF enhanced plasma lines generated in HF heating experiments. J. Geophys. Res. 2005, vol. 110, iss. A1, p. A01309. DOI:https://doi.org/10.1029/2004 JA010674.
26. Lehtinen M.S., Huuskonen A. General incoherent scatter analysis and GUISDAP. J. Atmos. Terr. Phys. 1996, vol. 58, no. 1-4, pp. 435-452.
27. Milikh G.M., Demekhov A., Vartanyan A., Mishin E.V., Huba J. A new model for formation of artificial ducts due to ionospheric HF-heating. Geophys. Res. Lett. 2012, vol. 39, no. 10. L10102. DOI:https://doi.org/10.1029/2012GL051718.
28. Mishin E., Watkins B., Lehtinen N., Eliasson B., Pedersen T., Grach S. Artificial ionospheric layers driven by high-frequency radiowaves: An assessment. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 3497-3524. DOI:https://doi.org/10.1002/2015JA021823.
29. Rapoport V.O., Frolov V.L., Komrakov G.P., Markov G.A., Belov A.S., Parrot M., Rauch J.L. Some results of measuring the characteristics of electromagnetic and plasma disturbances stimulated in the outer ionosphere by high-power high-frequency radio emission from the “Sura” facility. Radiophysics and Quantum Electronics. 2007, vol. 50, no. 8, pp. 645-656.
30. Rietveld M.T., Senior A., Markkanen J., Westman A. New capabilities of the upgraded EISCAT high-power HF facility. Radio Sci. 2016, vol. 51, no. 9, pp. 1533-1546. DOI: 10.1002/ 2016RS006093.
31. Rishbeth H., van Eyken A.P. EISCAT - early history and the first ten years of operation. J. Atmos. Terr. Phys. 1993, vol. 55, no. 4-5, pp. 525-542.
32. Robinson T.R. The heating of the high latitude ionosphere by high power radio waves. Phys. Rep. 1989, vol. 179, no. 2-3, pp. 79-209.
33. Schunk R.W., Nagy A.F. Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge, Cambridge Univ. Press, 2000, 554 p.
34. Stubbe P., Kopka H. Summary of results obtained with the Tromso heating facility. Radio Sci. 1983, vol. 18, no. 6, pp. 831-834. DOI:https://doi.org/10.1029/RS018i006p00831.
35. Stubbe P. Review of ionospheric modification experiments in Tromsø. J. Atmos. Terr. Phys. 1996, vol. 58, no. 1-4, pp. 349-386.
36. Vartanyan A., Milikh G.M., Mishin E., Parrot M., Galkin I., Reinisch B., et al. Artificial ducts caused by HF heating of the ionosphere by HAARP. J. Geophys. Res. 2012, vol. 117, A10307. DOI:https://doi.org/10.1029/2012JA017563.
37. Vas’kov V.V., Gurevich A.V. Self-focusing and resonant instability in the ionospheric F region. Teplovyye nelineinyye yavleniya v plazme [Thermal Nonlinear Phenomena in Plasma]. Gorky, IPF AN SSSR, 1979, pp. 81-138. (In Russian).
38. Zawdie K.A., Drob D.P., Siskind D.E., Coker C. Calculating the absorption of HF radio waves in the ionosphere. Radio Sci. 2017, vol. 52, pp. 767-783. DOI:https://doi.org/10.1002/2017RS006256.
39. URL: https://spaceweather.com (accessed March 1, 2023).
40. URL: https://ccmc.gsfc.nasa.gov/modelweb/models/msis _vitmo.php (accessed March 1, 2023).
41. URL: https://wdc.kugi.kyoto-u.ac.jp (accessed March 1, 2023).