MANIFESTATION OF SOLAR WIND COROTATING INTERACTION REGIONS IN GCR INTENSITY VARIATIONS
Abstract and keywords
Abstract (English):
The regions of interaction between solar wind streams of different speed, known as corotating interaction regions, form an almost constantly existing structure of the inner heliosphere. Using observational data on the main characteristics of the heliosphere, important for GCR modulation, and the results of 3D MHD modeling of corotating interaction regions, and Monte Carlo simulation of recurrent GCR variations, we analyze the importance of the corotating interaction regions for longitude-averaged characteristics of the heliosphere and GCR propagation, and possible ways for simulating long-term GCR intensity variations with respect to the corotating interaction regions.

Keywords:
heliosphere, corotating interaction regions, galactic cosmic rays, GCR modulation, long-term GCR variations, 27-day GCR intensity variation, MHD approximation, Monte Carlo method
Text
Text (PDF): Read Download
References

1. Adriani O., Barbarino G.C., Bazilevskaya G.A., Bellotti R., Boezio M., Bogomolov E.A., et al. Time dependence of the proton flux measured by PAMELA during the 2006 July - 2009 December solar minimum. Astrophys. J. 2013, vol. 765:91, no. 2. DOI:https://doi.org/10.1088/0004-637X/765/2/91.

2. Aslam O.P.M., Bisschoff D., Potgieter M.S., Boezio M., Munini R. Modeling of heliospheric modulation of cosmic-ray positrons in a very quiet heliosphere. Astrophys. J. 2019, vol. 8736: 70, no. 1. DOI:https://doi.org/10.3847/1538-4357/ab05e6.

3. Belcher J.W., Davis L. Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 1971, vol. 76, iss. 16, p. 3534. DOI:https://doi.org/10.1029/JA076i016p03534.

4. Burlaga L.F., Ness N.F., Wang J.-M., Sheeley N.R. Heliospheric magnetic field strength and polarity from 1 to 81 AU during the ascending phase of solar cycle 23. J. Geophys. Res. 2002, vol. 107, no. A11, p. 1410. DOI:https://doi.org/10.1029/2001JA009217.

5. Gosling J.T., Pizzo V. Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 1999, vol. 89, pp. 21-52. DOI:https://doi.org/10.1023/A:100 5291711900.

6. Guo X., Florinski V. Corotating interaction regions and the 27 day variation of galactic cosmic rays intensity at 1 AU during the cycle 23/24 solar minimum. J. Geophys. Res.: Space Phys. 2014, vol. 119, iss. 14, pp. 2411-2429. DOI:https://doi.org/10.1002/2013JA019546.

7. Guo X., Florinski V. Galactic cosmic-ray intensity modulation by corotating interaction region stream interfaces at 1 AU, Astrophys. J. 2016, vol. 826:65, no. 1. DOI:https://doi.org/10.3847/0004-637X/826/1/65.

8. Hundhausen A.J. Coronal Expansion and Solar Wind, Springer-Verlag Berlin Heidelberg New York. 1972, 238 p. DOI:https://doi.org/10.1007/978-3-642-65414-5.

9. Jokipii J.R., Levy E.H., Hubbard W.B. Effects of particle drift on cosmic-ray transport. I. General properties, application to solar modulation. Astrophys. J. 1977, vol. 213, p. 861. DOI:https://doi.org/10.1086/155218.

10. Kalinin M.S., Krainev M.B. Two dimensional transport equation for galactic cosmic rays as a consequence of a reduction of the three-dimensional equation. Geomagnetizm and Aeronomy. 2014, vol. 54, no. 4, pp. 423-429. DOI: 10.7868/ S0016794014040051.

11. Kalinin M.S., Bazilevskaya G.A., Krainev M.B., Svirzhevsky N.S., Svirzhevskaya A.K., Stozhkov Yu.I. Description of galactic cosmic ray intensity in the last three solar activity minima. Bull. Russ. Acad. Sci. Phys. 2015, vol. 79, no. 5, pp. 606-608. DOI:https://doi.org/10.3103/S1062873815050238.

12. Kalinin M.S., Krainev M.B., Gvozdevsky B.B., Aslam O.P.M., Ngobeni M.D., Potgieter M.S. On the transition from 3D to 2D transport equations for a study of long-term cosmic-ray intensity variations in the heliosphere. 2021. POS(ICRC2021)1323. https://pos.sissa.it.

13. Khabarova O., Obridko V. Puzzles of the interplanetary magnetic field in the inner heliosphere. Astrophys. J. 2012, vol. 761: 82. DOI:https://doi.org/10.1088/0004-637X/761/2/82.

14. Kopp A., Wiengarten T., Fichtner H., Effenberger F., Kühl P., Heber B., Raath J.-L., Potgieter M. Cosmic-ray transport in heliospheric magnetic structures. II. Modeling particle transport through corotating interaction regions. Astrophys. J. 2017, vol. 837:37, no. 1. DOI:https://doi.org/10.3847/1538-4357/aa603b.

15. Kóta J., Jokipii J.R. Effects of drift on the transport of cosmic rays. VI. A three-dimensional model including diffusion. Astrophys. J. 1983, vol. 265, pp. 573-581. DOI:https://doi.org/10.1086/160701.

16. Kóta J., Jokipii J.R. The role of corotating interaction regions in cosmic-ray modulation, Geophys. Res. Lett. 1991, vol. 18, iss. 10, pp. 1797-1800. DOI:https://doi.org/10.1029/91GL02307.

17. Kóta J, Jokipii J.R. Modeling of 3-D corotating cosmic-ray structures in the heliosphere, Space Sci. Rev. 1998, vol. 83, pp. 137-145. DOI:https://doi.org/10.1007/978-94-017-1189-0_12.

18. Krainev M.B. Manifestations of two branches of solar activity in the heliosphere and GCR intensity. Solar-Terr. Phys. 2019, vol. 5, iss. 4, pp. 10-20. DOI:https://doi.org/10.12737/stp-54201902.

19. Krainev M.B., Bazilevskaya G.A., Borkut I.K., Mayorov A.K. Relationship between the longitude distribution of the heliospheric characteristics and the GCR intensity in 2007-2008 and 2014-2015. Physics of Atomic Nuclei. 2018, vol. 81, iss. 9, pp. 1355-1361. DOI:https://doi.org/10.1134/S1063778818090156.

20. Krymskiy G.F. Diffusion mechanism of diurnal cosmic-ray variation, Geomagnetizm end Aeronomy. 1964, vol. 4, pp. 763-769.

21. Luo X., Zhang M., Feng X., Potgieter M, Shen F., Bazilevskaya G.A. A numerical study of the effects of corotating interaction regions on cosmic-ray transport, Astrophys. J. 2020, vol. 899:90, no. 2. DOI:https://doi.org/10.3847/1538-4357/aba7b5.

22. Mays M.L., Taktakishvili A., Pulkkinen A., Macneice P.J. Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Solar Phys. 2015, vol. 290, iss. 6, pp. 1775-1814. DOI:https://doi.org/10.1007/s11207-015-0692-1.

23. Modzelewska R., Alania M.V. Dependence of the 27-day variation of cosmic rays on the global magnetic field of the Sun, Adv. Space Res. 2012, vol. 50, iss. 6, pp. 716-724. DOI:https://doi.org/10.1016/j.asr.2011.07.022.

24. Modzelewska R., Bazilevskaya G.A., Boezio M., Koldashov S.V., Krainev M.B., Marcelli N., Mayorov A.G., Mayorova M.A., Munini R., Troitskaya I. K., Yulbarisov R.F., Luo X., Potgieter M.S., Aslam O.P.M. Study of the 27 day variations in GCR fluxes during 2007-2008 based on PAMELA and ARINA observations. Astrophys. J. 2020, vol. 904:3, p. 13. DOI:https://doi.org/10.3847/1538-4357/abbdac.

25. Ngobeni M.D., Aslam O.P.M., Bisschoff D., Potgieter M.S., Ndiitwani D.C., Boezio M., Marcelli N., Munini R., Mikhailov V.V., Koldobskiy S.A. The 3D numerical modeling of the solar modulation of galactic protons and helium nuclei related to observations by PAMELA between 2006 and 2009. Astrophys. Space Sci. 2020, vol. 365:182. DOI:https://doi.org/10.1007/s10509-020-03896-1.

26. Ngobeni M.D., Potgieter M.S., Aslam O.P.M., Bisschoff D., Ramokgaba I.I., Ndiitwani D.C. Simulations of the solar modulation of helium isotopes constrained by observations, Adv. Space Res. 2022, vol. 69, iss. 5, pp. 2330-2341. DOI:https://doi.org/10.1016/j.asr.2021.12.018.

27. Odstrcil D. Modeling 3-D solar wind structure Adv. Space Res. 2003, vol. 32, iss. 4, pp. 49-506. DOI:https://doi.org/10.1016/S0273-1177(03)00332-6.

28. Parker E.N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 1958a, vol. 128, p. 664. DOI:https://doi.org/10.1086/146579.

29. Parker E.N. Cosmic ray modulation by solar wind. Phys. Rev. 1958b, vol. 110, iss. 6, p. 1445. DOI:https://doi.org/10.1103/PhysRev. 110.1445.

30. Parker E.N. The passage of energetic charged particles through interplanetary space, Planet. Space Sci. 1965, vol. 13, iss. 1, pp. 9-49. DOI:https://doi.org/10.1016/0032-0633(65)90131-5.

31. Pizzo V.J., Gosling J.T. 3-D simulation of high-latitude interaction regions: comparison with Ulysses results. Geophys. Res. Lett. 1994, vol. 21, iss. 18, pp. 2063-2066. DOI: 10.1029/ 94GL01581.

32. Potgieter M.S., Vos E.E. Difference in the heliospheric modulation of cosmic-ray protons and electrons during the solar minimum period of 2006 to 2009. Astronomy and Astrophysics. 2017, vol. 601, no. 23. DOI:https://doi.org/10.1051/0004-6361/201629995.

33. Richardson I.G. Solar wind stream interaction regions throughout the heliosphere. Living Reviews Solar Physics. 2018, vol. 15, no. 1, pp. 1-95. DOI:https://doi.org/10.1007/s41116-017-0011-z.

34. Riley P., Linker J.A., Lionello R., Mikic Z. Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling. J. Atmos. Solar-Terr. Phys. 2012, vol. 83, pp. 1-10. DOI:https://doi.org/10.1016/j.jastp.2011.12.013.

35. Shen F., Yang Z., Zhang J., Wei W., Feng X. Three-dimensional MHD simulation of solar wind using a new boundary treatment: comparison with in situ data at Earth, Astrophys. J. 2018, vol. 866:18, no. 1. DOI:https://doi.org/10.3847/1538-4357/aad806.

36. Schulz M. Interplanetary sector structure and the heliomagnetic equator, Astrophys. Space Sci. 1973, vol. 24, pp. 371-384. DOI:https://doi.org/10.1007/BF02637162.

37. Simpson J.A. A brief history of recurrent solar modulation of the galactic cosmic rays (1937-1990). Space Sci. Rev. 1998, vol. 83, pp. 169-176. DOI:https://doi.org/10.1007/978-94-017-1189-0_15.

38. Smith E.J. Solar cycle evolution of the heliospheric magnetic field: The Ulysses legacy. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, iss. 2-3, pp. 277-289. DOI:https://doi.org/10.1016/j.jastp.2010.03.019.

39. Svirzhevsky N.S., Bazilevskaya G.A., Kalinin M.S., Krainev M.B., Svirzhevskaya A.K., Stozhkov Yu.I. Galactic cosmic ray intensity simulation with spatial and temporal dependence of fluctuations of the helioshperic magnetic field. Bull. Russ. Acad. Sci. Phys. 2015, vol. 79, no. 5, pp. 609-612. DOI:https://doi.org/10.3103/S1062873815050391.

40. Svirzhevsky N.S., Bazilevskaya G.A., Kalinin M.S., Krainev M.B., Makhmutov V.S., Svirzhevskaya A.K., Stozhkov Yu.I. Heliospheric magnetic field and the Parker model. Geomagnetizm end Aeronomiya. 2021, vol. 61, no. 3, pp. 299-311. DOI:https://doi.org/10.1134/S0016793221030154.

41. Svirzhevskaya A.K., Svirzhevsky N.S., Stozhkov Yu.I. Step-like variations of cosmic rays and their relation to an inclination of the heliospheric current sheet. Proceedings of ICRC 2001, pp. 3843-3846.

42. Wang Y.-M., Sheeley N.R. Solar wind speed and coronal flux-tube expansion. Astrophys. J. 1990, vol. 355, pp. 726-732, DOI:https://doi.org/10.1086/168805.

43. Wiengarten T., Kleimann J., Fichtner H., Kühl P., Kopp A., Heber B., Kissmann R. Cosmic ray transport in heliospheric magnetic structures. I. Modeling background solar wind using the CRONOS magnetohydrodynamic code. Astrophys. J. 2014, vol. 788, no. 1, p. 80. DOI:https://doi.org/10.1088/0004-637X/788/1/80.

44. Yanenko N.N. Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoy fiziki, Novosibirsk, Nauka Publ. 1967. 197 p. [The method of fractional steps for solving multidimensional problems of mathematical physics. Berlin. Springer Publ. 1971. 156 p.]

45. Zhang M.A path integral approach to the theory of heliospheric cosmic-ray modulation. Astrophys. J. 1999a, vol. 510, no. 2, pp. 715-725. DOI:https://doi.org/10.1086/306624.

46. Zhang M.A Markov stochastic process theory of cosmic-ray modulation, Astrophys. J. 1999b, vol. 513, pp. 409-420. DOI:https://doi.org/10.1086/306857.

47. URL: http://wso.stanford.edu (accessed January 30, 2023).

48. URL: http://cr0.izmiran.ru/mosc/main.htm (accessed January 30, 2023).

49. URL: http://omniweb.gsfc.nasa.gov/ (accessed January 30, 2023).

Login or Create
* Forgot password?