Schmidt Institute of Physics of the Earth, RAS
Moscow, Russian Federation
Moskva, Russian Federation
Schmidt Institute of Physics of the Earth, RAS
Geophysical Center RAS
Moscow, Russian Federation
Moscow, Russian Federation
We examine magnetic field variations at 4–12 Hz frequencies in the upper ionosphere and on Earth. The ground response to the coherent oscillations at two SWARM satellites near and above the high frequency boundary of the nominal Pc1 range is studied. We use CARISMA data to analyze ground pulsations. Ionospheric oscillations are predominantly registered at geomagnetic latitudes above 65°, i. e. from the auroral zone to the polar cusp-cleft region. The oscillations at the same frequencies are recorded at auroral and subauroral ground stations at distances from 1500 to 3000 km from satellite footprint. Ratio RGI of the oscillation amplitude on Earth to that in the ionosphere retrieved from the observed data is compared to the values calculated for a finite radius Alfvén beam incident onto a quasi-real ionosphere. [Fedorov et al., 2018]. Radial distribution of RGI depends on the oscillation frequency and the altitude distribution of ionospheric parameters controlled mostly by season and local time. The most probable values of RGI range from 10–3 to 10–1. The RGI values obtained from the observed data agree with model ones at incident beam radius of about several hundred kilometers.
ionosphere, geomagnetic pulsations, MHD waves
1. Allen R.C., Zhang J.-C., Kistler L.M., Spence H.E., Lin R.-L., Klecker B., Dunlop M.W., André M., Jordanova V.K. A statistical study of EMIC waves observed by Cluster: 1. Wave properties. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 5574-5592. DOI:https://doi.org/10.1002/2015JA021333.
2. Belyaev P.P., Bosinger T., Isaev S.V., Trakhtengerts V.Y., Kangas J. First evidence at high latitude for the ionospheric Alfvén resonator. J. Geophys. Res. 1999, vol. 104, pp. 4305-4318.
3. Bilitza D., Reinisch B. International Reference Ionosphere. Improvements and new parameters. Adv. Space Res. 2008, vol. 42, pp. 599-609. DOI:https://doi.org/10.1016/j.asr.2007.07.048.
4. Emmert J.T., Drob D.P., Picone J.M., Siskind D.E., Jones M., Mlynczak M.G., et al. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities. Earth and Space Science. 2020, vol. 8, e2020EA001321. DOI:https://doi.org/10.1029/2020EA001321.
5. Engebretson M.J., Posch J.L., Westerman A.M., Otto N.J., Slavin J.A., Le G., Strangeway R.J., Lessard M.R. Temporal and spatial characteristics of Pc1 waves observed by ST5. J. Geophys. Res. 2008, vol. 113, A07206. DOI:https://doi.org/10.1029/2008JA013145.
6. Ermakova E.N., Yakhnin A.G., Yakhnina T.A., Demekhov A.G., Kotik D.S. Sporadic geomagnetic pulsations at frequencies up to15 Hz in the magnetic storm of November 7-14, 2004: features of the amplitude and polarization spectra and their connection with ion-cyclotron wave in the magnetooshhere. Radiophys Quantum El. 2016, vol. 58, pp. 547-560. DOI:https://doi.org/10.1007/s11141-016-9628-3.
7. Fedorov E.N., Pilipenko V.A., Engebretson M.J., Hartinger M.D. Transmission of a magnetospheric Pc1 wave beam through the ionosphere to the ground. J. Geophys. Res.: Space Phys. 2018, vol. 123, pp. 3965-3982. DOI:https://doi.org/10.1029/2018JA025338.
8. Hedin A.E., Reber C.A., Newton G.P., Spencer N.W., Brinton H.C., Mayr H.G., Potter W.E. A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS. 2. Composition. J. Geophys. Res. 1977, vol. 82, pp. 2148-2156. DOI:https://doi.org/10.1029/JA082i016p02148.
9. Jenkins G., Watts D. Spectral analysis and its applications, Holden-Day, San Francisco, London, Amsterdam, 1969, 525 p.
10. Le G., Chi P.J., Strangeway R.J., Slavin J.A. Observations of a unique type of ULF wave by lowaltitude Space Technology 5 satellites. J. Geophys. Res. 2011, vol. 116, A08203. DOI:https://doi.org/10.1029/2011JA016574.
11. Mann I.R., Milling D.K. ,•Rae I.J., Ozeke L.G., Kale•A., Kale Z.C., Murphy K.R., et al. The upgraded CARISMA magnetometer array in the THEMIS era. Space Sci Rev. 2008, vol. 141, pp. 413-451. DOI:https://doi.org/10.1007/s11214-008-9457-6.
12. Olsen N., Friis-Christensen E., Floberghagen R., Alken P., Beggan C.D., Chulliat A., et al. The Swarm satellite constellation application and research facility (SCARF) and Swarm data products. Earth Planets Space. 2013, vol. 64, pp. 1189-1200. DOI:https://doi.org/10.5047/eps.2013.07.001.
13. Papitashvili V.O., Papitashvili N.E., King J.H. Magnetospheric geomagnetic coordinates for space physics data presentation and visualization. Adv. Space Res. 1997, vol. 20, pp. 1097-1100. DOI:https://doi.org/10.1016/S0273-1177(97)00565-6.
14. Polyakov S.V., Rapoport V.O. Ionospheric Alfvén resonator. Geomagnetism and Aeronomy. 1981, vol. 21, pp. 816-822.
15. Rème H., Aoustin C., Bosqued J.M., et al. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 2001, vol. 19, pp. 1303-1354. DOI:https://doi.org/10.5194/angeo-19-1303-2001.
16. Vines S.K., Allen R.C., Anderson B.J., Engebretson M.J., Fuselier S.A., Russel, C.T., et al. EMIC waves in the outer magnetosphere: Observations of an off-equator source region. Geophys. Res. Lett. 2019, vol. 46, pp. 5707-5716. DOI:https://doi.org/10.1029/2019GL082152.
17. Yagova N.V., Fedorov E.N., Pilipenko V.A., Mazur N.G., Martines-Bedenko V.A. Geomagnetic variations in the frequency range 2.5-12 Hz in the ionospheric F layer as measured by SWARM satellites. Solar-Terr. Phys. 2023, vol. 9, iss. 1, pp. 34-46. DOI:https://doi.org/10.12737/stp-91202305.
18. Yahnin A.G., Yahnina T.A., Frey H.U. Subauroral proton spots visualize the Pc1 source. J. Geophys. Res. 2007, vol. 112, A10223. DOI:https://doi.org/10.1029/2007JA012501.
19. URL: https://swarm-diss.eo.esa.int/ (accessed January 11, 2023).
20. URL: https://www.carisma.ca/about-carisma (accessed January 11, 2023).