VERILOG-A MODEL OF THE IMPURITY FREEZE-OUT IN LDD REGIONS AT CRYOGENIC TEMPERATURES
Abstract and keywords
Abstract (English):
The article shows the practical implementation of the impurity freeze-out effect in the lightly-doped areas of the drain and source (LDD) in the Verilog-A model of the resistor. This model is based on a theoretical understanding of the freeze-out effect at cryogenic temperatures and data from the TCAD simulation of a MOSFET. The TCAD simulation data were represented by transconductance characteristics of n- and p-channel transistors Id(Vg) in linear mode (Vd=0.1 V) at temperature range from -200 °C to 27 °C for transistors with dimensions 10 um × 10 um. The model is applicable to the use as part of a macromodel of a MOSFET transistor for a CMOS bulk process with a supply voltage of 1.8 V and a minimum channel length of 0.18 um. Since the model is based on a limited set of TCAD modeling data, this version is the basis on which it is possible to build a geometrically scalable model that will be valid over the entire range of drain voltages.

Keywords:
SPICE, Verilog-A, CMOS, cryogenic temperature, impurity freeze-out
References

1. Metod validacii v kremnii bibliotek standartnyh cifrovyh elementov / S.A. Il'in, D.Yu. Kopeykin, O.V. Lastochkin [i dr.] // Problemy razrabotki perspektivnyh mikro- i nanoelektronnyh sistem. - 2020. - № 4. - S. 140-145.

2. Opredelenie parametrov SPICE-modeley MOPT pri nizkih temperaturah (do minus 200 °C) / I. A. Haritonov, I. A. Chetverikov, E. Yu. Kuzin, M. R. Ismail-Zade // Trudy NIISI RAN. - 2017. - T.7. - № 2. - S. 41-45.

3. Biryukov, V.N. Tablichno-analiticheskaya model' polevogo tranzistora dlya kriogennyh temperatur / V.N. Biryukov, A.M. Pilipenko, I.V. Semernik. - 2012.

4. Zhao, H. Modeling of a standard 0.35 um CMOS technology operating from 77 K to 300 K / H. Zhao, X. Liu // Cryogenics. - 2014. - V. 59. - Pp. 49-59.

5. Kan, J. A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature / J. Kan, S. Weifeng, S. Longxing // Journal of Semiconductors. - 2011. - V. 32, № 6. - Pp. 1-6.

6. Krasnikov, G.Ya. Obschaya teoriya tehnologii i mikroelektronika: Ch. 2. Voprosy metoda i klassifikacii / G.Ya. Krasnikov, E.S. Gornev, I.V. Matyushkin // Elektronnaya tehnika. Seriya 3: Mikroelektronika. - 2017. - № 4(168). - C. 16-41.

7. Beckers, A. Cryogenic MOS Transistor Model / A. Beckers, F. Jazaeri, C. Enz // IEEE Transactions on Electron Devices. - 2018. - V. 65, № 9. - P. 3617-3625.

8. Cryo-CMOS Circuits and Systems for Quantum Computing Applications / B. Patra [et al.] // IEEE Journal of Solid-State Circuits. - 2018. - V. 53, № 1. - Pp. 309-321.

9. Incandela, R.M. / Nanometer CMOS characterization and compact modeling at deep-cryogenic temperatures / R.M. Incandela // Proc. 47th Eur. Solid-State Device Res. Conf. (ESSDERC). - 2017. - Pp. 58-61.

10. Balestra, F. Physics and performance of nanoscale semiconductor devices at cryogenic temperatures / F. Balestra, G. Ghibaudo // Semicond. Sci. Technol. - 2017. - V. 32, № 2. - P. 1-14.

11. Steady-state over-current safe operation area (SOA) of the SiC MOSFET at cryogenic and room temperatures / X. Chen [et al.] // Cryogenics. - 2022. - V. 122 (10). - C. 103424. - DOI:https://doi.org/10.1016/j.cryogenics.2022.103424.

12. Büttner, S. Characterization of a Si and GaN converter at cryogenic temperatures / S. Büttner, A. Nowak, M. März // Cryogenics. - 2022. - V. 128. - C. 103594. - DOI:https://doi.org/10.1016/j.cryogenics.2022.103594.

13. Büttner, S. Profitability of low-temperature power electronics and potential applications / S. Büttner, M. März // Cryogenics. - 2021. - V. 121. - C. 103392. - DOI:https://doi.org/10.1016/j.cryogenics.2021.103392

14. Homulle, H. Cryogenic low-dropout voltage regulators for stable low-temperature electronics / H. Homulle, E. Charbon // Cryogenics. - 2018. - V. 95. - Pp. 11-17.

15. Dongmin, K. Low-temperature characteristics of normally off AlGaN/GaN-on-Si gate-recessed MOSHFETs / D. Keum, H. Kim // Cryogenics. - 2018. - V. 93. - Pp. 51-55.

16. Tayal, S. Study of temperature effect on junction less Si nanotube FET concerning analog/RF performance / S. Tayal, A. Nandi // Cryogenics. - 2018. - V. 92. - Pp. 71-75.

17. MOSFET characterization and modeling at cryogenic temperatures / C. Luo [et al.] // Cryogenics. - 2019. - V. 98. - Pp. 12-17. - DOI:https://doi.org/10.1016/j.cryogenics.2018.12.009.

18. Impact of LDD structures on the operation of silicon MOSFETs at low temperature / I.M. Hafez, G. Ghibaudo, F. Balestra, M. Haond // Solid-State Electronics. - 1995. - V. 38. - № 2. - Pp. 419-424.

19. Beckers, A. Charactrerization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K / A. Beckers, F. Jazaeri, C. Enz // Journal of the Electronic Devices Society. - 2018. - V. 6. - P. 1007-1018.

20. Homulle, H. Cryogenic electronics for the read-out of quantum processors : doctoral thesis: 2019.05.01 / H. Homulle. - Delft, 2019. - 173 p. -DOI:https://doi.org/10.4233/uuid:e833f394-c8b1-46e2-86b8-da0c71559538.

Login or Create
* Forgot password?