Moscow, Russian Federation
from 01.01.2006 to 01.01.2021
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
employee
Moscow, Russian Federation
employee from 01.01.2014 until now
Moscow, Russian Federation
Moskva, Moscow, Russian Federation
Moscow, Russian Federation
graduate student from 01.01.2019 to 01.01.2021
Moscow, Russian Federation
Solar activity and solar wind parameters decreased significantly in solar cycles (SCs) 23–24. In this paper, we analyze solar wind measurements at the rising phase of SC 25 and compare them with similar data from the previous cycles. For this purpose, we simultaneously selected the OMNI database data for 1976–2022, both by phases of the 11-year solar cycle and by large-scale solar wind types (in accordance with catalog [http://www.iki.rssi.ru/pub/omni]), and calculated the mean values of the plasma and magnetic field parameters for the selected datasets. The obtained results support the hypothesis that the continuation of this cycle will be similar to that of cycle 24, i.e. SC 25 will be weaker than SCs 21 and 22.
solar wind, solar cycle
1. Bendat J.S., Piersol A.G. Measurement and Analysis of Random Data. New York, Wiley-Interscience, 1971, rr. 139-258.
2. Biswas A., Karak B.B., Usoskin I., Weisshaar E. Long-term modulation of solar cycles. Space Sci Rev. 2023, vol. 219, 19. DOI:https://doi.org/10.1007/s11214-023-00968-w.
3. Burlaga L.F., Lazarus A.J. Lognormal distributions and spectra of solar wind plasma fluctuations: Wind 1995-1998. J. Geophys. Res. 2000, vol. 105, iss. A2, pp. 2357-2364. DOI:https://doi.org/10.1029/1999ja900442.
4. Chowdhury P., Sarp V., Kilcik A., Ray P.Ch., Rozelot J.-P., Obridko V.N. A non-linear approach to predicting the amplitude and timing of the sunspot area in cycle 25. Monthly Not. Royal Astron. Soc. 2022, vol. 513, iss. 3, pp. 4152-4158. DOI:https://doi.org/10.1093/mnras/stac1162.
5. Coban G.C., Raheem A.-u., Cavus H., Asghari-Targhi M. Can solar cycle 25 be a new Dalton minimum? Solar Phys. 2021, vol. 296, 156. DOI:https://doi.org/10.1007/s11207-021-01906-1.
6. Dmitriev A.V., Suvorova A.V., Veselovsky I.S. Statistical characteristics of the heliospheric plasma and magnetic field at the Earth's orbit during four solar cycles 20-23. Handbook on Solar Wind: Effects, Dynamics and Interactions. New York, Nova Science Publishers, 2009, pp. 81-144.
7. Du Z.L. The solar cycle: predicting the maximum amplitude of the smoothed highest 3-hourly aa index in 3 d for cycle 25 based on a similar-cycle method. Astrophys. Space Sci. 2023, vol. 368, 11. DOI:https://doi.org/10.1007/s10509-023-04167-5.
8. Feynman J., Ruzmaikin A. The Sun’s strange behavior: Maunder minimum or Gleissberg cycle? Solar Phys. 2011, vol. 272, pp. 351-363. DOI:https://doi.org/10.1007/s11207-011-9828-0.
9. Gonzalez W.D., Tsurutani B.T., Clua de Gonzalez A.L. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999, vol. 88, pp. 529-562. DOI:https://doi.org/10.1023/A:1005160129098.
10. Gopalswamy N., Yashiro S., Xie H., Akiyama S., Mäkelä P. Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J. Geophys. Res.: Space Phys. 2015, vol. 120, iss. 11, pp. 9221-9245. DOI:https://doi.org/10.1002/2015JA021446.
11. Gringauz K.I. Some results of experiments in interplanetary space by means of charged particle traps on Soviet space probes. Proc. Second International Space Science Symposium. Florence, Italy, 10-14 April 1961, pp. 339-553.
12. Hundhausen A.J. Coronal Expansion and Solar Wind. Berlin; Heidelberg, Springer-Verlag, 1972, XII, 238 p. DOI:https://doi.org/10.1007/978-3-642-65414-5.
13. Javaraiah J. Will solar cycles 25 and 26 be weaker than cycle 24? Solar Phys. 2017, vol. 292, 172. DOI:https://doi.org/10.1007/s11207-017-1197-x.
14. Javaraiah J. Prediction for the amplitude and second maximum of solar cycle 25 and a comparison of the predictions based on strength of polar magnetic field and low-latitude sunspot area. Monthly Not. Royal Astron. Soc. 2023, vol. 520, iss. 4, pp. 5586-5599.DOI:https://doi.org/10.1093/mnras/stad479.
15. King J.H., Papitashvili N.E. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res.: Space Phys. 2005, vol. 110, A02209. DOI:https://doi.org/10.1029/2004JA010649.
16. Lamy P., Gilardy H. The state of the white-light corona over the minimum and ascending phases of solar cycle 25 - comparison with past cycles. Solar Phys. 2022, vol. 297, 140. DOI:https://doi.org/10.1007/s11207-022-02057-7.
17. McComas D.J., Angold N., Elliott H.A., Livadiotis G., Schwadron N.A., Skoug R.M., Smith C.W. Weakest solar wind of the space age and the current “Mini” solar maximum. Astrophys. J. Lett. 2013, vol. 779, 2. DOI:https://doi.org/10.1088/0004-637X/779/1/2.
18. Mursula K., Qvick T., Holappa L., Asikainen T. Magnetic storms during the space age: Occurrence and relation to varying solar activity. J. Geophys. Res.: Space Phys. 2022, vol. 127, iss. 12, e2022JA030830. DOI:https://doi.org/10.1029/2022JA030830.
19. Nagovitsyn Y.A., Ivanov V.G. Solar cycle pairing and prediction of cycle 25. Solar Phys. 2023, vol. 298, 37. DOI: 10.1007/ s11207-023-02121-w.
20. Neugebauer M., Snyder C.W. The mission of Mariner 2: Planetary observation, solar plasma experiment. Science. 1962, vol. 138, pp. 1095-1097.
21. Peguero J.C., Carrasco V.M.S. A critical comment on “Can solar cycle 25 be a new Dalton minimum?”. Solar Phys. 2023, vol. 298, 48.DOI:https://doi.org/10.1007/s11207-023-02140-7.
22. Petrovay K. Solar cycle prediction. Living Reviews in Solar Physics. 2020.DOI:https://doi.org/10.1007/s41116-020-0022-z.
23. Prasad A., Roy S., Sarkar A., Panja S.C., Patra S.N. An improved prediction of solar cycle 25 using deep learning based neural network. Solar Phys. 2023, vol. 298, 50. DOI: 10.1007/ s11207-023-02129-2.
24. Schwenn R. Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 2006, vol. 124, pp. 51-76. DOI:https://doi.org/10.1007/s11214-006-9099-5.
25. Schwenn R. Solar wind sources and their variations over the solar cycle. Solar Dynamics and Its Effects on the Heliosphere and Earth. New York, Springer, 2007, pp. 51-76. (Space Sci. Ser. ISSI. Vol. 22). DOI:https://doi.org/10.1007/978-0-387-69532-7_5.
26. Temmer M. Space weather: The solar perspective. Living Rev. Solar Phys. 2021, vol. 18, 4. DOI:https://doi.org/10.1007/s41116-021-00030-3.
27. Yermolaev Yu.I., Yermolaev M.Yu., Zastenker G.N., Zelenyi L.M., Petrukovich A.A., Sauvaud J.-A. Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: A review. Planetary and Space Sci. 2005, vol. 53, iss. 1-3, pp. 189-196. DOI:https://doi.org/10.1016/j.pss.2004.09.044.
28. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Catalog of Large-Scale Solar Wind Phenomena during 1976-2000. Cosm. Res. 2009, vol. 47, no. 2, pp. 81-94.
29. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., Yermolaev M.Yu., Riazantseva M.O., Rakhmanova L.S., et al. Drop of solar wind at the end of the 20th century. J. Geophys. Res.: Space Phys. 2021a, vol. 126, e2021JA029618. DOI:https://doi.org/10.1029/2021JA029618.
30. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., Yermolaev M.Y. Decrease in solar wind parameters after a minimum of 22-23 solar cycles. Proc. Thirteenth Workshop “Solar Influences on the Magnetosphere, Ionosphere and Atmosphere”. Primorsko, Bulgaria, 13-17 September 2021. 2021b, vol. 13, pp. 117-121.
31. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., Yermolaev M.Y. Peculiarities of the heliospheric state and the solar-wind/magnetosphere coupling in the era of weakened solar activity. Universe. 2022a, vol. 8, 495. DOI:https://doi.org/10.3390/universe8100495.
32. Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., Yermolaev M.Yu., Riazantseva M.O., Rakhmanova L.S., et al. Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 5. Influence of the solar activity decrease. Universe. 2022b, vol. 8, 472. DOI:https://doi.org/10.3390/universe 8090472.
33. Yermolaev Yu.I., Lodkina I.G., Khokhlachev A.A. Will solar cycle 25 be similar to cycle 24 according to solar wind observations? Proc. 15th Workshop “Solar Influences on the Magnetosphere, Ionosphere and Atmosphere”. 5-9 June 2023, Bulgaria. 2023. DOI:https://doi.org/10.13140/RG.2.2.28430.54082.
34. Zharkova V., Vasilieva I., Shepherd S., Popova E. Periodicities in solar activity, solar radiation and their links with terrestrial environment. Natural Sci. 2023, vol. 15, pp. 111-147. DOI:https://doi.org/10.4236/ns.2023.153010.
35. Zolotova N.V., Ponyavin D.I. Is the new Grand minimum in progress? J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 3281-3285. DOI:https://doi.org/10.1002/2013JA019751.
36. URL: http://www.iki.rssi.ru/pub/omni (accessed June 26, 2023).
37. URL: https://spdf.gsfc.nasa.gov/pub/data/omni/low_res_omni (accessed June 26, 2023).