PHOTOMETRICAL OBSERVATIONS AND SHAPE MODELING OF SPACE DEBRIS IN MEDIUM EARTH ORBITS
Abstract and keywords
Abstract (English):
The circular medium Earth orbits with a period of about half a day in the inclination range from 50° to 70° are used by various global navigation satellite systems (GNSS), such as GLONASS, GPS, Beidou, Galileo. GNSS operating orbits are one of the important areas in near-Earth space. The information about the space debris (SD) existing in this region and its characteristics is important for risk assessments and mitigation. We report the results of photometrical observations of SD objects in the vicinity of GNSS orbits obtained with the 1.6-meter AZT-33IK telescope of ISTP SB RAS Sayan Solar Observatory in 2018–2023. We show how SD objects existing in this region are distributed relative to GNSS objects. We derive time and phase dependences of the apparent brightness of all measured SD objects. Folded light curves are constructed, rotation periods and their dynamics are determined. The results of modeling the light curve inherent for several SD objects from the GNSS orbital are presented. We suggest a possible space object shape and parameters of proper rotation, which correspond to the observed light curve.

Keywords:
space debris, photometrical observations, light curve, modeling
Text
Text (PDF): Read Download
References

1. Bakhtigaraev N.S., Levkina P.A., Chazov V.V. Empirical model of motion of space debris in the geostationary region. Solar System Res. 2016, vol. 50, iss. 2, pp. 130-135. DOI:https://doi.org/10.1134/S0038094616020027.

2. Deeming T.J. Fourier analysis with unequally-spaced data. Astrophys. Space Sci. 1975, vol. 36, iss. 1, pp. 137-158. DOI:https://doi.org/10.1007/BF00681947.

3. De Pontieu B. Database of photometric periods of artificial satellites. Adv. Space Res. 1997, vol. 19, iss. 2, pp. 229-232. DOI:https://doi.org/10.1016/S0273-1177(97)00005-7.

4. Devyatkin A.B., Gorshanov D.L., Kupriyanov V.V., Vereshchagina I.A. “Apex-I” and “Apex-II” software packages for astronomical CCD observations processing. Astronomicheskii vestnik [Astronomical Bulletin]. 2010, vol. 50, no. 1, pp. 74-87. (In Russian).

5. Karpov S., Katkova E., Beskin G., Biryukov A., Bondar S., Davydov E., et al. Massive photometry of low-altitude artificial satellites on MINIMEGA-TORTORA. Revista Mexicana de Astronomia y Astrofisica (Serie de Conferencias). 2016, vol. 48, pp. 112-113.

6. Lafler J., Kinman T.D. An RR Lyrae star survey with the Lick 20-inch astrograph II. The calculation of RR Lyrae periods by electronic computer. Astrophys. J. Supplement. 1965, vol. 11, pp. 216-222. DOI:https://doi.org/10.1086/190116.

7. Landau L.D., Lifshitz E.M. Teoreticheskaya fizika. T. I.: Mekhanika. [Theoretical Physics. Vol. I.: Mechanics]. Moscow, Nauka Publ., 2004, 224 p. (In Russian).

8. Murakami H., Rios O., Impelluso T.J. A theoretical and numerical study of the Dzhanibekov and tennis racket phenomena. Journal Applied Mechanics. 2016, vol. 83, iss. 11, 111006. 10 p. DOI:https://doi.org/10.1115/1.4034318.

9. Šilha J., Krajčovič S., Zigo M., Toth J., Žilkova D., Zigo P., et al. Space debris observations with the Slovak AGO70 telescope: Astrometry and light curves. Adv. Space Res. 2020, vol. 65, iss. 8, pp. 2018-2035. DOI:https://doi.org/10.1016/j.asr.2020.01.038.

10. URL: https://www.sdo.esoc.esa.int/environment_report/ Space_Environment_Report_latest.pdf (accessed August 20, 2023).

11. URL: https://www.esa.int/Safety_Security/Space_Debris/ Space_debris_by_the_numbers (accessed August 11, 2023).

12. URL: https://www.space-track.org (accessed August 20, 2023).

13. URL: http://spacedata.vimpel.ru/ru (accessed August 7, 2023).

14. URL: https://www.mathworks.com/products/matlab.html (accessed January 12, 2022).

15. URL: https://www.virtualdub.org (accessed January 12, 2022).

16. URL: http://ckp-rf.ru/ckp/3056/ (accessed March 12, 2023).

Login or Create
* Forgot password?