from 01.01.2014 until now
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Magnetosheath is a transition layer between the solar wind and the magnetosphere and may contribute to the geoeffectiveness of various large-scale interplanetary phenomena. In this paper, we examine the dynamics of the turbulent fluctuation spectra behind the bow shock during undisturbed solar wind and when interplanetary coronal mass ejections and corotation interaction regions interact with the magnetosphere. The study is based on statistical analysis of the turbulence features inside the magnetosheath at different distances from the bow shock. We demonstrate that the turbulence features change when plasma crosses the bow shock for the solar wind of all types and they usually recover when plasma moves away from the bow shock. However, peculiarities in the turbulence development occur during interplanetary coronal mass ejections. Moreover, during disturbed solar wind there are relations between the turbulence features at the sub-ion scales and background plasma parameters such as plasma parameter β, the angle θBN between the interplanetary magnetic field and the local bow shock normal, solar wind bulk velocity, and the distance to the magnetosheath boundaries.
solar wind, magnetosheath, turbulence, space plasma
1. Alexandrova O., Mangeney A., Maksimovic M., Cornilleau-Wehrlin N., Bosqued J.-M., André M. Alfvén vortex filaments observed in magnetosheath downstream of a quasi-perpendicular bow shock. J. Geophys. Res. 2006, vol. 111, A12208. DOI:https://doi.org/10.1029/2006JA011934.
2. Alexandrova O., Carbone V., Veltri P., Sorriso-Valvo L. Solar wind cluster observations: turbulent spectrum and role of Hall effect. Planetary Space Sci. 2007, vol. 55, pp. 2224–2227. DOI:https://doi.org/10.1016/j.pss.2007.05.022.
3. Alexandrova O., Lacombe C., Mangeney A. Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: cluster observations. Ann. Geophys. 2008, vol. 26, pp. 3585–3596. DOI:https://doi.org/10.5194/angeo-26-3585-2008.
4. Alexandrova O., Saur J., Lacombe C., Mangeney A. Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 2009, vol. 103, no. 16, 165003. DOI:https://doi.org/10.1103/PhysRevLett.103.165003.
5. Alexandrova O., Chen C.H.K., Sorriso-Valvo L., Horbury T.S., Bale S.D. Solar wind turbulence and the role of ion instabilities. Space Sci. Rev. 2013, vol. 178, pp. 101–139. DOI:https://doi.org/10.1007/s11214-013-0004-8.
6. Angelopoulos V. The THEMIS Mission. Space Sci.Rev. 2008. Vol. 141. P. 5–34. DOI:https://doi.org/10.1007/s11214-008-9336-1.
7. Auster H.U., Glassmeier K.H., Magnes W., Aydogar O., Baumjohann W., Constantinescu D., Fische, D., Fornacon, K.H., Georgescu E., Harvey P., et al. The THEMIS fluxgate magnetometer. Space Sci. Rev. 2008, vol. 141,pp. 235–264. DOI:https://doi.org/10.1007/s11214-008-9365-9.
8. Bandyopadhyay R., Matthaeus W.H., Parashar T.N., Yang Y., Chasapism A., Giles B., Gershman D., Pollock C., Russell C., Strangeway R., et al. Statistics of kinetic dissipation in the Earth’s magnetosheath: MMS observations. Phys. Rev. Lett. 2020, vol. 124, 255101. DOI:https://doi.org/10.1103/PhysRevLett.124.255101.
9. Barkhatov N.A., Belliustin N.S., Bougeret J.-L., Sakharov S.Yu., Tokarev Yu.V. Influence of the solar wind magnetic field on the Earth’s magnetosheath turbulence behind the bow shock. Radiophysics and Quantum Electronics. 2001, vol. 44, pp. 993–1002. DOI:https://doi.org/10.1023/A:1014828310176.
10. Barkhatov N.A., Vorobjev V.G., Revunov S.E., Barkhatova O.M., Yagodkina O.I. Substorm Activity and Orientation of the Front of a Shock Wave of an Interplanetary Magnetic Cloud. Geomagnetism and Aeronomy. 2019, vol. 59, no. 4, pp. 398–406. DOI:https://doi.org/10.1134/S0016793219040042.
11. Barkhatova O.M., Vorobjev V.G., Barkhatov N.A., Revunov S.E. ULF Disturbances Caused by the Turbulent Sheath of Interplanetary Magnetic Clouds. Bulletin of the Russian Academy of Sciences: Physics. 2021, vol. 85, no. 3, pp. 238–241. DOI:https://doi.org/10.3103/S1062873821030060.
12. Boldyrev S., Perez J.C. Spectrum of kinetic Alfven turbulence. Astrophys. J. Lett. 2012, vol. 758, no. 2, p. 5. DOI:https://doi.org/10.1088/2041-844 8205/758/2/L44.
13. Borovsky J.E. The velocity and magnetic field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties. J. Geophys. Res. 2012, vol. 117, A05104. DOI:https://doi.org/10.1029/2011JA017499.
14. Bruno R., Carbone V. The solar wind as a turbulence laboratory Living Reviews in Solar Physics. 2013, vol. 10, p. 7. DOI: 10.12942/ lrsp-2013-2.
15. Chen C.H.K., Boldyrev S. Nature of kinetic scale turbulence in the Earth’s magnetosheath. Astrophys. J. 2017, vol. 842, 122. DOI:https://doi.org/10.3847/1538-4357/aa74e0.
16. Chen C.H.K., Horbury T.S., Schekochihin A.A., Wicks R.T., Alexandrova O. Mitchell, J. Anisotropy of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 2010, vol. 104, 255002. DOI:https://doi.org/10.1103/PhysRevLett.104.255002.
17. Chen C.H.K., Boldyrev S., Xia Q., Perez J.C. Nature of Subproton Scale Turbulence in the Solar Wind. Phys.Rev. Lett. 2013, vol. 110, no. 22, 225002. DOI:https://doi.org/10.1103/Phys-RevLett.110.225002.
18. Chen C.H., Leung L., Boldyrev S., Maruca B.A., Bale S.D. Ion-scale spectral break of solar wind turbulence at high and low beta. Geophys. Res. Lett. 2014, vol. 41, pp. 8081–8088. DOI:https://doi.org/10.1002/2014 GL062009.
19. Goldreich P., Sridhar S. Toward a theory of interstellar turbulence. II. Strong Alfvénic turbulence. Astrophys. J. 1995, vol. 438, pp. 763–775. DOI:https://doi.org/10.1086/175121.
20. Greenstadt E.W. Binary index for assessing local bow shock obliquity. J. Geophys. Res. 1972, vol. 77, pp. 5467–5479. DOI:https://doi.org/10.1029/JA077i028p05467.
21. Gutynska O., Šafránková J., Němeček Z. Correlation properties of magnetosheath magnetic field fluctuations. J. Geophys. Res. 2009, vol. 114, A08207. DOI:https://doi.org/10.1029/2009JA014173.
22. Howes G.G., TenBarge J.M., Dorland W., Quataert E., Schekochihin A.A, Numata R., Tatsuno T. Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 2011, vol. 107, no. 3, 035004. DOI: 10.1103/ PhysRevLett.107.035004.
23. Huang S.Y., Sahraoui F., Deng X.H., He J.S., Yuan Z.G., Zhou M., Pang Y., Fu H.S. Kinetic turbulence in the terrestrial magnetosheath: Cluster observations. Astrophys. J. 2014, vol. 789, L28. DOI:https://doi.org/10.1088/2041-8205/789/2/L28.
24. Huang S.Y., Hadid L.Z., Sahraoui F., Yuan Z.G., Deng X.H. On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence. Astrophys. J. Lett. 2017, vol. 836, no. 1, L10. DOI:https://doi.org/10.3847/2041-8213/836/1/L10.
25. Iroshnikov P.S. Turbulence of a Conducting Fluid in a Strong Magnetic Field. Soviet Astronomy. 1964, vol. 7, p. 566.
26. Kiyani K.H., Chapman S.C., Khotyaintsev Y.V., Dunlop M.W., Sahraoui F. Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett. 2009, vol. 103, no. 7, 075006. DOI:https://doi.org/10.1103/PhysRevLett.103.075006.
27. Kiyani K.H., Osman K.T., Chapman S.C. Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Philosophical Trans. of the Royal Society of London. Ser. A., 2015, 373:20140155. DOI: 10.1098/ rsta.2014.0155.
28. Klein K.G., Howes G.G., Tenbarge J.M. The violation of the taylor hypothesis in measurements of solar wind turbulence. Astrophys. J. Lett. 2014, vol. 790, 20. DOI:https://doi.org/10.1088/2041-8205/790/2/L20.
29. Kraichnan R.H. Inertial‐Range Spectrum of Hydromagnetic Turbulence. Phys. Fluids. 1965, vol. 8, pp. 1385–1387. DOI:https://doi.org/10.1063/1.1761412.
30. Lacombe C., Belmont G. Waves in the Earth’s magnetosheath: observations and interpretations. Adv. Space Res. 1995, vol. pp. 329–340. DOI:https://doi.org/10.1016/0273-1177(94)00113-F.
31. Lacombe C., Alexandrova O., Matteini L., Santolík O., Cornilleau-Wehrlin N., Mangeney A., de Conchy Y., Maksimovic M. Whistler Mode Waves and the Electron Heat Flux in the Solar Wind: Cluster Observations. Astrophys. J. 2014, vol. 796, no. 1, p. 5. DOI:https://doi.org/10.1088/0004-637X/796/1/5.
32. Lepping R.P., Acũna M.H., Burlaga L.F., Farrell W.M., Slavin J.A., Schatten K.H., Mariani F., Ness N.F., Neubauer F.M., Whang Y.C., et al. The WIND magnetic field investigation. Space Sci Rev. 1995, vol. 71, pp. 207–229. DOI:https://doi.org/10.1007/BF00751330.
33. Li H., Jiang W., Wang C., Verscharen D., Zeng C. Russell C.T., Giles B., Burch J.L. Evolution of the Earth’s magnetosheath turbulence: a statistical study based on MMS observations. Astrophys. J., 2020, vol. 898, L43. DOI: 10.3847/ 2041-8213/aba531.
34. Macek W.M., Krasinska A., Silveira M.V.D., Sibeck D.G., Wawrzaszek A., Burch J.L., Russell C.T. Magnetospheric multiscale observations of turbulence in the magnetosheath on kinetic scales. Astrophys. J. 2018, vol. 864, L29. DOI:https://doi.org/10.3847/2041-8213/aad9a8.
35. Ogilvie K.W., Chornay D.J., Fritzenreiter R.J., Hunsaker F., Keller J., Lobell J., Miller G., Scudder J.D., Sittler Jr. E.C., Torbert R.B., et al. SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Sci Rev. 1995, V. 71, P. 55–77. DOI:https://doi.org/10.1007/BF00751326.
36. Rakhmanova L., Riazantseva M., Zastenker G. Plasma fluctuations at the flanks of the Earth’s magnetosheath at ion kinetic scales. Ann. Geophys. 2016, vol. 34, pp. 1011–1018. DOI:https://doi.org/10.5194/angeo-34-1011-2016.
37. Rakhmanova L., Riazantseva M., Zastenker G., Verigin M. Kinetic scale ion flux fluctuations behind the quasi-parallel and quasi-perpendicular bow shock. J. Geophys. Res.: Space Phys. 2018a, vol. 123, pp. 5300–5314. DOI:https://doi.org/10.1029/2018JA025179.
38. Rakhmanova L.S., Riazantseva M.O., Zastenker G.N., Verigin M.I. Effect of the magnetopause and bow shock on characteristics of plasma turbulence in the Earth’s magnetosheath, Geomagnetism and Aeronomy. 2018b, vol. 58, pp. 718–727. DOI:https://doi.org/10.1134/S0016793218060129.
39. Rakhmanova L.S., Riazantseva M.O., Zastenker G.N., Yermolaev Y.I., Lodkina I.G., Chesalin L.S. Turbulent cascade in the magnetosheath affected by the solar wind’s plasma turbulence. Cosmic Res. 2019, vol. 57, pp. 443–450. DOI:https://doi.org/10.1134/S0010952519060066.
40. Rakhmanova L.S., Riazantseva M.O., Zastenker G.N., Yermolaev Y.I., Lodkina I.G. Dependence of the properties of a turbulent cascade behind the bow shock on the dynamics of the solar wind parameters. Cosmic Res. 2020a, vol. 58, no. 6, pp. 478–486. DOI:https://doi.org/10.1134/S0010952520060088.
41. Rakhmanova L., Riazantseva M., Zastenker G., Yermolaev Y., Lodkina I. Dynamics of plasma turbulence at Earth’s bow shock and through the magnetosheath. Astrophys. J. 2020b, vol. 901, 30. DOI: 10.3847/ 1538-4357/abae00.
42. Rakhmanova L., Riazantseva M., Zastenker G. Plasma and magnetic field turbulence in the Earth’s magnetosheath at ion scales. Front. Astron. Space Sci. 2021, vol. 7, 616635. DOI:https://doi.org/10.3389/fspas.2020.616635.
43. Rakhmanova L., Riazantseva M., Zastenker G., Yermolaev Y. Large-scale solar wind phenomena affecting the turbulent cascade evolution behind the quasi-perpendicular bow shock. Universe. 2022, vol. 8, no. 12, 611. DOI:https://doi.org/10.3390/universe8120611.
44. Rakhmanova L., Riazantseva M., Zastenker G., Yermolaev Y. Role of the variable solar wind in the dynamics of small-scale magnetosheath structures. Front. Astron. Space Sci. 2023, 10:1121230. DOI:https://doi.org/10.3389/fspas.2023.1121230.
45. Riazantseva M.O., Budaev V.P., Zelenyi L.M., Zastenker G.N., Pavlos G.P., Safrankova J., Nemecek Z., Prech L., Nemec F. Dynamic properties of small-scale solar wind plasma fluctuations. Philosophical Trans. of the Royal Society of London. Ser. A. 2015, vol. 373, 20140146. DOI:https://doi.org/10.1098/rsta.2014.0146.
46. Riazantseva M.O., Rakhmanova L.S., Zastenker G.N., Yermolaev Yu.I., Lodkina I.G., Chesalin L.S. Small-Scale Plasma Fluctuations in Fast and Slow Solar Wind Streams. Cosmic Res. 2020, vol. 57, no. 6, pp. 434–442.
47. Roberts O.W., Narita Y., Nakamura R., Vörös Z., Gershman D. Anisotropy of the spectral index in ion scale compressible turbulence: MMS observations in the magnetosheath. Front. Phys. 2019, vol. 7, 184. DOI:https://doi.org/10.3389/fphy.2019.00184.
48. Safránková J., Němeček Z., Němec F., Přech L., Pitňa A., Chen C.H.K., Zastenker G.N. Solar wind density spectra around the ion spectral break. Astrophys. J. 2015, vol. 803, 107. DOI:https://doi.org/10.1088/0004-637X/803/2/107.
49. Sahraoui F., Belmont G., Rezeau L., Cornilleau-Wehrlin N., Pinçon J.L., Balogh A. Anisotropic turbulent spectra in the terrestrial magnetosheath as seen by the cluster spacecraft. Phys. Rev. Lett. 2006, vol. 96, 075002. DOI:https://doi.org/10.1103/PhysRev Lett.96.075002.
50. Sahraoui F., Hadid L., Huang S. Magnetohydrodynamic and kinetic scale turbulence in the near-Earth space plasmas: a (short) biased review. Rev. Modern Physics. 2020, vol. 4, 4. DOI:https://doi.org/10.1007/s41614-020-0040-2.
51. Schekochihin A.A., Cowley S.C., Dorland W., Hammett G.W., Howes G.G., Quataert E., Tatsuno T. Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl., 2009, vol. 182, pp. 310–377. DOI:https://doi.org/10.1088/0067-0049/182/1/310.
52. Schwartz S.J., Burgess D., Moses J.J. Low-frequency waves in the Earth’s magnetosheath: present status. Ann. Geophys. 1996, vol. 14, pp. 1134–1150. DOI:https://doi.org/10.1007/s00585-996-1134-z
53. Shevyrev N., Zastenker G.N., Nozdrachev M.N., Němeček Z., Šafránková J., Richardson J.D. High and low frequency large amplitude variations of plasma and magnetic field in the magnetosheath: radial profile and some features. Adv. Space Res. 2003, vol. 31, no. 5, pp. 1389–1394. DOI:https://doi.org/10.1016/S0273-1177(03)00008-5.
54. Shue J.-H., Song P., Russell C.T., Steinberg J.T., Chao J.K., Zastenker G., Vaisberg O.L. Kokubun S., Singer H.J., Detman T.R., Kawano H. Magnetopause location under extreme solar wind conditions. J. Geophys. Res. 1998, vol. 103, no. A8, pp. 17691–17700. DOI:https://doi.org/10.1029/98JA01103.
55. Spreiter J.R., Summers A.L., Alksne A.Y. Hydromagnetic flow around the magnetosphere. Planet. Space Sci. 1966, vol. 14, pp. 223–253.
56. Stawarz J.E., Eastwood J.P., Phan T.D., Gingell I.L., Shay M.A., Burch J.L., Ergun R.E., Giles B.L., Gershman D.J., Le Contel O., et al. Properties of the turbulence associated with electron-only magnetic reconnection in Earth’s magnetosheath. Astrophys. J. 2019, vol. 877, L37. DOI:https://doi.org/10.3847/2041-8213/ab21c8.
57. Taylor G.I. The spectrum of turbulence. Proc. R. Soc. A Math. Phys. Eng. Sci. 1938, vol. 164, pp. 476–490. DOI:https://doi.org/10.1098/rspa. 1938.0032.
58. Verigin M.I., Kotova G.A., Slavin J., Szabo A., Kessel M., Safrankova J., Nemecek Z., Gombosi T.I., Kabin K., Shugaev F., Kalinchenko A. Analysis of the 3-D shape of the terrestrial bow shock by Interball/Magion 4 observations. Adv. Space Res. 2001, vol. 28, no 6, pp. 857–862. DOI:https://doi.org/10.1016/S0273-1177(01)00502-6.
59. Vörös Z., Yordanova E., Khotyaintsev Y.V., Varsan, A., Narita Y. Energy conversion at kinetic scales in the turbulent magnetosheath. Frontiers in Astronomy and Space Sciences. Sci.. 2019, vol. 6, 60. DOI:https://doi.org/10.3389/fspas.2019.00060.
60. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Yu. Catalog of large-scale solar wind phenomena during 1976–2000. Cosmic Res. 2009, vol. 47, no. 2, pp. 81–94.
61. Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Y. Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 7094–7106. DOI: 10.1002/ 2015JA021274.
62. Yordanova E., Vaivads A., André M., Buchert S.C., Vörös Z. Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the cluster spacecraft. Phys. Rev. Lett. 2008, vol. 100, 205003. DOI:https://doi.org/10.1103/PhysRevLett.100.205003.
63. Yordanova E., Vörös Z., Raptis S., Karlsson T. Current sheet statistics in the magnetosheath. Front. Astron. Sp. Sci. 2020, vol. 7, 2. DOI:https://doi.org/10.3389/fspas.2020.00002.
64. URL: https://themis.ssl.berkeley.edu/orbits (accessed November 23, 2023).
65. URL: http://www.iki.rssi.ru/pub/omni (accessed November 23, 2023).
66. URL: https://rscf.ru/project/22-72-00105/ 0221(accessed November 23, 2023).