Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
We study the topside ionosphere above the NmF2 ionization maximum and the transition region between the ionosphere and the plasmasphere. We analyze the interaction between the topside ionosphere and the plasmasphere during a strong geomagnetic storm in February 2022, using data from the Irkutsk Incoherent Scatter Radar (IISR) and total electron content data from global navigation satellite systems. To determine the ionosphere and plasmasphere electron contents, an original technique is employed to calculate the integral content of ion density from IISR data, which takes into account the two-component composition of ionospheric plasma. We compare different functions of approximation of the topside ionosphere. The original technique was adjusted for use with IISR Ne data fitted based on the β-Chapman profile. We compare the plasmasphere electron content during quiet and magnetically disturbed days, as well as the dynamics of the O⁺/H⁺ transition height, which is the upper boundary of the ionosphere and the lower boundary of the plasmasphere.
topside ionosphere, plasmasphere, O⁺/H⁺ transition height, total electron content, incoherent scatter radars
1. Alsatkin S.S., Medvedev A.V., Ratovsky K.G. Features of Ne recovery at the Irkutsk Incoherent Scatter Radar. Solar-Terr. Phys. 2020, vol. 6, iss. 1, pp. 77–88. DOI:https://doi.org/10.12737/stp-61202009.
2. Bilitza D., Reinisch B.W., Radicella S.M., Pulinets S., Gulyaeva T., Triskova L. Improvements of the International Reference Ionosphere Model for the topside electron density profile. Radio Sci. 2006, vol. 41, iss. 5, pp. 15–22. DOI: 10.1029/ 2005RS003370.
3. Bilitza D., Pezzopane M., Truhlik V., Altadill D., Reinisch B.W., Pignalberi A. The International Reference Ionosphere Model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, vol. 60, iss. 4, 65 p. DOI:https://doi.org/10.1029/2022RG000792.
4. Evans J.V. Theory and practice of ionosphere study by Thomson scatter radar. Proceedings of the IEEE, 1969, vol. 57, iss. 4, pp. 496–530. DOI:https://doi.org/10.1109/proc.1969.7005.
5. Farley D.T. Incoherent scatter power measurements; a comparison of various techniques. Radio Sci. 1969, vol. 4, iss. 2, pp. 139–142. DOI:https://doi.org/10.1029/RS004i002p00139.
6. Khabituev D.S., Shpynev B.G. Variations of O+/H+ transition height over East Siberia from Irkutsk incoherent scatter data and GPS total electron content. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space]. 2014, vol. 11, iss. 1, pp. 107–117. (In Russian).
7. Kohl H., King J.W. Atmospheric winds between 100 and 700 km and their effects on the ionosphere. J. Atmos. Terr. Phys. 1967, vol. 29, iss. 9, pp. 1045–1062. DOI:https://doi.org/10.1016/0021-9169(67)90139-0.
8. Krinberg I.A., Tashchilin A.V. Ionosfera i plazmosfera Ionosphere and Plasmasphere. Moscow, Nauka Publ., 1984, 188 p. (In Russian).
9. Kutiev I., Marinov P. Topside sounder model of scale height and transition height characteristics of the ionosphere. Adv. Space Res. 2007, vol. 39, iss. 5, pp. 759–766. DOI: 10.1016/ j.asr.2006.06.013.
10. Leitinger R., Zhang M.L., Radicella S.M. An improved bottomside for the ionospheric electron density model NeQuick. Ann. Geophys. 2005, vol. 48, iss. 3, pp. 525–534. DOI:https://doi.org/10.4401/ag-3217.
11. Lemaire J. F., Gringauz K.I. The Earth’s Plasmasphere. Cambridge: Cambridge University Press. 1998, p. 350.
12. Marinov P., Kutiev I., Belehaki A., Tsagouri I. Modeling the plasmasphere to topside ionosphere scale height ratio. Journal of Space Weather and Space Climate, 2015, vol. 5, A27. DOI:https://doi.org/10.1051/swsc/2015028.
13. Mathews J.D. A short history of geophysical radar at Arecibo Observatory. History of Geo- and Space Sciences. 2013, vol. 4, iss. 1, pp. 19–33. DOI:https://doi.org/10.5194/hgss-4-19-2013.
14. Medvedev A.V., Potekhin A.P. Irkutsk Incoherent Scatter Radar: history, present and future. History of Geo- and Space Sciences. 2019, vol. 10, iss. 2, pp. 215–224. DOI:https://doi.org/10.5194/hgss-10-215-2019.
15. Medvedev A.V., Zavorin A.V., Kushnarev D.S., Shpynev B.G. Modernization of the hardware and software complex of the Irkutsk IS radar. Key elements of a new, multi-channel registration system. Solnechno-zemnaya fizika [Solar-Terrestrial Physics], 2004, iss. 5, pp. 107–110. (In Russian).
16. Nava B., Coїsson P., Radicella S.M. A new version of the NeQuick ionosphere electron density model. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, pp. 1856–1862. DOI:https://doi.org/10.1016/j. jastp.2008.01.015.
17. Pignalberi A., Pezzopane M., Themens D., Haralambous H., Nava B., Coїsson P. On the analytical description of the topside ionosphere by NeQuick: modeling the scale height through COSMIC/FORMOSAT-3 selected data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2020, vol. 13, pp. 1867–1878. DOI:https://doi.org/10.1109/JSTARS.2020.2986683..
18. Reinisch B.W., Nsumei P., Huang X., Bilitza D. Modeling the F2 topside and plasmasphere for IRI using IMAGE/RPI and ISIS data. Adv. Space Res. 2007, vol. 39, iss. 5, pp. 731–738. DOI:https://doi.org/10.1016/j.asr.2006.05.032.
19. Roma-Dollase D., Hernández-Pajares M., Krankowski A., Kotulak K., Ghoddousi-Fard R., Yuan Y., et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. Journal of Geodesy. 2018, vol. 92, iss. 4, pp. 691–706. DOI:https://doi.org/10.1007/s00190-017-1088-9.
20. Shpynev B.G. Incoherent scatter Faraday rotation measurements on a radar with single linear polarization. Radio Sci. 2004, vol. 39, iss. 3, 8 p. DOI:https://doi.org/10.1029/2001RS002523.
21. Shpynev B.G., Khabituev D.S. Estimation of the plasmasphere electron density and O+/H+ transition height from Irkutsk incoherent scatter data and GPS total electron content. J. Atmos. Solar-Terr. Phys. 2014, vol. 119, pp. 223–228. DOI:https://doi.org/10.1016/j.jastp.2014.01.007.
22. Shpynev B.G., Zherebtsov G.A., Tashchilin A.V., Khabituyev D.S., Shcherbakov A.A. Analyzing conditions of the mid-latitude outer ionosphere from Irkutsk IS radar measurement data. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2010, iss. 16, pp. 3–8. (In Russian).
23. Stankov S.M., Jakowski N., Heise S., Muhtarov P., Kutiev I., Warnant R. A new method for reconstruction of the vertical electron density distribution in the upper ionosphere and plasmasphere. J. Geophys. Res. 2003, vol. 108, iss. A5. pp. 1164–1184. DOI:https://doi.org/10.1029/2002JA009570.
24. Stankov S.M., Jakovski N. Topside ionospheric scale height analysis and modeling based on radio occultation measurements. J. Atmos. Solar-Terr. Phys. 2006, vol. 68, iss. 2, pp. 134–162. DOI:https://doi.org/10.1016/j.jastp.2005.10.003.
25. Tashlykov V.P., Medvedev A.V., Vasilyev R.V. Backscatter signal model for Irkutsk Incoherent Scatter Radar. Solar-Terr. Phys. 2018, vol. 4, iss. 2, pp. 24–32. DOI:https://doi.org/10.12737/stp-42201805.
26. Tashchilin A.V., Romanova E.B. Modeling the properties of the plasmasphere under quiet and disturbed conditions. Geomagnetism and Aeronomy. 2014, vol. 54, iss. 1, pp. 11–19. DOI:https://doi.org/10.1134/S0016793214010150.
27. Verhulst T.G.W., Stankov S.M. Height-dependent sunrise and sunset: Effects and implications of the varying times of occurrence for local ionospheric processes and modelling. Adv. Space Res. 2017, vol. 60, pp. 1797–1806. DOI: 10.1016/ j.asr.2017.05.042.
28. Woodman R.F., Farley D.T., Balsley B.B., Milla M.A. The early history of the Jicamarca Radio Observatory and the incoherent scatter technique. History of Geo- and Space Sciences. 2019, vol. 10, iss. 2, pp. 245–266. DOI:https://doi.org/10.5194/hgss-10-245-2019.
29. URL: http://ckp-rf.ru/ckp/3056/ (accessed June 20, 2024).
30. URL: http://ckp-rf.ru/77733/ (accessed June 20, 2024).