Irkutsk, Russian Federation
from 01.01.1999 until now
Irkutsk, Irkutsk region, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Yakutsk, Russian Federation
We present the results of near-Earth interplanetary space, magnetosphere, and atmosphere monitoring during large-scale solar wind disturbances at the end of August 2005. The monitoring was carried out using ground-level cosmic ray (CR) observations made at the worldwide network of neutron monitors as well as muon telescopes in Yakutsk and Novosibirsk. As a result of the analysis performed by different methods, we have obtained variation properties of CRs of different rigidities in Earth’s orbit, their pitch angle anisotropy, orientation and configuration of the interplanetary magnetic field, changes in the planetary system of geomagnetic cutoff rigidities during geomagnetic disturbances, as well as mass average air temperature over CR stations equipped with muon telescopes. For the periods of geomagnetic disturbances, we have determined parameters of magnetospheric ring current and magnetopause currents.
cosmic rays, Forbush effect, magnetosphere, atmosphere
1. Abunin A.A., Abunina M.A., Belov A.V., Eroshenko E.A., Oleneva V.A., Yanke V.G. Forbush effects with a sudden and gradual onset. Geomagnetism and Aeronomy. 2012, vol. 52, iss. 3, pp. 292–299.
2. Alania M.V., Wawrzynczak A., Sdobnov V.E., Kravtsova M.V. Temporal changes in the rigidity spectrum of Forbush. Solar Phys. 2013. Vol. 286. P. 561–576. DOI 10.1007/ s11207-013-0273-0.
3. Asai A., Shibata K., Ishii T.T., Oka M., Kataoka R., Fujiki K., Gopalswamy N. Evolution of the anemone AR NOAA 10798 and the related geo-effective flares and CMEs. J. Geophys. Res. 2009, vol. 114, no A00A21. DOI:https://doi.org/10.1029/2008JA013291.
4. Belov A.V., Eroshenko E.A., Oleneva V.A., Struminsky A.V., Yanke V.G. What are Forbush effects caused by and what are they associated with? Bulletin of the Academy of Sciences of USSR. Ser. Physics. 2001, vol. 65, iss. 3, pp. 411–414.
5. Cane H.V., Richardson I.G., Wibberenz G., Dvornikov V.M., Sdobnov V.E. Cosmic ray evidence for magnetic field line disconnection inside interplanetary coronal mass ejections. Proc. 27th Int. Cosmic Ray Conf. Hamburg, Germany, August 2001. 2001, vol. 9, pp. 3531–3534.
6. Dvornikov V.M., Matyukhin Yu.G. Energeticheskiye poteri kosmicheskikh luchey pri dvizhenii v regulyarnom magnitnom pole solnechnogo vetra [Energetic loss of cosmic rays when moving in a regular magnetic field of the solar wind] Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya [Bulletin of the Academy of Sciences of USSR. Ser. Physics]. 1976, vol. 39, iss. 3, pp. 624–626. (In Russian).
7. Dvornikov V.M., Matyukhin Yu.G. Effekty modulyatsii kosmicheskikh luchey v korotiruyushchikh magnitnykh lovushkakh solnechnogo vetra. Izv. AN SSSR. Ser. fiz. 1979, vol. 43, iss. 12, pp. 2573–2576. (In Russian).
8. Dvornikov V.M., Sdobnov V.E. Time variations of the cosmic ray distribution function during a solar event of September 29, 1989. J. Geophys. Res. 1997, vol. 102, A11, pp. 24209–24219.
9. Dvornikov V.M., Kravtsova M.V., Sdobnov V.E. Diagnostics of the Electromagnetic Characteristics of the Interplanetary Medium Based on Cosmic Ray Effects. Geomagnetism and Aeronomy. 2013, vol. 53, no 4, pp. 430–440. DOI:https://doi.org/10.1134/S0016793213040075.
10. Dorman L.I. Variatsii kosmicheskikh luchey [Variations of cosmic rays]. Moscow, Gos. Izdatel’stvo tekhniko-teoreticheskoy Literatury, 1957, 492 p. (In Russian).
11. Forbush S.E. On the effects in the cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 1937, vol. 51, pp. 1108–110.
12. Grigoryev V.G., Starodubtsev S.A., Dvornikov V.M., Sdobnov V.E. Estimation of the solar proton spectrum in the GLE70 event. Adv. Space Res. 2009, vol. 43, pp. 515–517. DOI:https://doi.org/10.1016/j.asr.2008.08.010.
13. Kichigin G.N., Sdobnov V.E. Geomagnetic cutoff rigidities of cosmic rays in a model of the bounded magnetosphere with the ring current. Geomagnetism and Aeronomy. 2017, vol. 57, iss. 2, pp. 132–136. DOI:https://doi.org/10.1134/S0016793217020049.
14. Kichigin G.N., Kravtsova M.V., Sdobnov V.E. Parameters of current systems in the magnetosphere as derived from observations of cosmic rays during the 2015 June magnetic storm. Solar-Terr. Phys. 2017, vol. 3, iss. 3, pp. 13–17. DOI:https://doi.org/10.12737/stp-33201702.
15. Kovalev I.I., Olemskoy S.V, Sdobnov V.E. A proposal to extend the spectrographic global survey method. J. Atmos. Solar-Terr. Phys. 2022, vol. 235, 105887. DOI: 10.1016/ j.jastp.2022.105887.
16. Krymskiy G.F. Diffusion mechanism of diurnal cosmic-ray variations. Geomagnetism and Aeronomy. 1964, vol. 4, no 6, pp. 763–769.
17. Krymskii G.F., Modulyatsiya kosmicheskikh luchei v mezhplanetnom prostranstve [Cosmic ray modulation in the interplanetary space]. Moscow, Nauka Publ., 1969, 152 p. (In Russian).
18. Kuzmin A.I. Variatsii kosmicheskikh luchey vysokikh energiy [High energy cosmic ray variations]. Moscow, Nauka Publ., 1964, 126 p. (In Russian).
19. Liu Y., Hayashi K. The 2003 October–November fast halo coronal mass ejections and the large-scale magnetic field structures. Astrophys. J. 2006, vol. 640, 1135. DOI:https://doi.org/10.1086/500290.
20. Parker E.N. Cosmic ray modulation by the solar wind. Phys. Rev. 1958. Vol. 110, no. 6. P. 328–334.
21. Ptitsyna N.G., Danilova O.A., Tyasto M.I., Sdobnov V.E. Cosmic ray cutoff rigidity governing by solar wind and magnetosphere parameters during the 2017 Sep 6–9 solar-terrestrial event. J. Atmos. Solar-Terr. Phys. 2023, vol. 246, 106067. DOI:https://doi.org/10.1016/j.jastp.2023.106067.
22. Richardson I.G., Dvornikov V.M., Sdobnov V.E., Cane H.V. Bidirectional particle flows at cosmic ray and lower (~1 MeV) energies and their association with interplanetary coronal mass ejections/ejecta. JGR. 2000, vol. 105, no A6, pp. 12579–12591. DOI:https://doi.org/10.1029/1999JA000331.
23. Verma V.K. On the origin of solar coronal mass ejections. J. Ind. Geophys. Union. 1998, vol. 2, pp. 65–74.
24. URL: https://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL_ ver1/2005_08/univ2005_08.html (accessed January 10, 2024).
25. URL: https://cdaw.gsfc.nasa.gov/CME_list/radio/waves_ type2.html (accessed January 10, 2024).
26. URL: https://omniweb.gsfc.nasa.gov (accessed January 10, 2024).
27. URL: https://lweb.cfa.harvard.edu/shocks (accessed January 10, 2024).
28. URL: https://www.nmdb.eu (accessed January 10, 2024).
29. URL: https://ysn.ru/ipm/yktMT00 (accessed January 10, 2024).
30. URL: https://cosm-rays.ipgg.sbras.ru (accessed January 10, 2024).
31. URL: https://www.solarmonitor.org (accessed January 10, 2024).
32. URL: https://lweb.cfa.harvard.edu (accessed January 10, 2024).
33. URL: https://cdaw.gsfc.nasa.gov (accessed January 10, 2024).
34. URL: ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1 (accessed January 10, 2024).
35. URL: http://ckp-rf.ru/ckp/3056/ (accessed January 10, 2024).
36. URL: https://ckp-rf.ru/catalog/usu/433536/ (accessed January 10, 2024).