Mytischi, Moscow, Russian Federation
Mytischi, Russian Federation
Mytischi, Moscow, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
Point clouds are widely used in ground-based forest scanning using LiDAR and stereo cameras. Point clouds often suffer from noise outliers and artifacts that distort data. Hardware accuracy and quality of the initial point cloud during ground scanning of a forest area can be improved by using scanners with higher expansion, as well as using photogrammetry or additional sensors. To eliminate noise, software methods can be used: point filtering, smoothing, statistical methods and reconstruction algorithms. A new approach to filtering the noise of the scanned forest area is based on the analysis of the values of the color components in the YCbCr- and L*a*b- spaces. The properties of the YCbCrand L*a*b-color models were investigated and threshold values for classifying points as noise or object depending on their distance to the centroids were determined. The use of a combined (YCbCr | L*a*b) filter on the point cloud reduced the number of points to 38 963 (17.41% of the original number). When calibrating the camera and LiDAR based on the (YCbCr | L*a*b) filter, the total average value of translation errors was 0.0247 m, rotation 6,244 degrees, reprojection 8,385 pixels. The noise-filtering method (YCbCr | L*a*b) shows high accuracy and reliability in removing noise and maintaining the integrity of objects in the point cloud, which will allow the data obtained on unmanned machines to be used later when performing logging operations.
point cloud, LiDAR, ground scanning of the forest, noise filtering, point cloud processing, digital model of the forest, Livox MID70, YCbCr, L*a*b*
1. Kabonen, Alexey & Ivanova, Natalya. Tree attribute assessment in urban greenwood using ground-based LiDAR and multiseasonal aerial photography data. Nature Conservation Research. 2023; 8: 64-83. DOI: http://doi.org/10.24189/ncr.2023.005.
2. Yang B., Haala N., Dong Z. Progress and perspectives of point cloud intelligence //Geo-spatial Information Science. - 2023. - S. 1-17. DOI: http://doi.org/10.1080/10095020.2023.2175478.
3. Kuželka K., Marušák R., Surový P. Inventory of close-to-nature forest stands using terrestrial mobile laser scanning //International Journal of Applied Earth Observation and Geoinformation. 2022; 115:103104. DOI: https://doi.org/10.1016/j.jag.2022.103104
4. Pires, Raul & Olofsson, Kenneth & Persson, Henrik & Lindberg, Eva & Holmgren, Johan. (2022). Individual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads. ISPRS Journal of Photogrammetry and Remote Sensing. 2022; 187: 211-224. DOI: http://doi.org/10.1016/j.isprsjprs.2022.03.004.
5. Zhang, Yupan & Tan, Yiliu & Onda, Yuichi & Hashimoto, Asahi & Gomi, Takashi & Chiu, Chenwei & Inokoshi, Shodai. (2023). A tree detection method based on trunk point cloud section in dense plantation forest using drone LiDAR data. Forest Ecosystems. 2023; 10: 100088. DOI: http://doi.org/10.1016/j.fecs.2023.100088.
6. Dai, Mingrui & Li, Guohua. (2023). Soft Segmentation of Terrestrial Laser Scanning Point Cloud of Forests. Applied Sciences. 2023; 13: 6228. DOI: http://doi.org/10.3390/app13106228.
7. Krassnitzer, Ralf & Nothdurft, Arne & Ritter, Tim & Tockner, Andreas & Erber, Gernot & Kühmaier, Martin & Hönigsberger, Ferdinand & Varch, Thomas & Holzinger, Andreas & Stampfer, Karl & Gollob, Christoph. Measurement of Individual Tree Parameters with Carriage-Based Laser Scanning in Cable Yarding Operations. Croatian journal of forest engineering. 2023; 2: 44 DOI: http://doi.org/44.https://doi.org/10.5552/crojfe.2023.2252.
8. Gollob, Christoph & Ritter, Tim & Wassermann, Clemens & Nothdurft, Arne. (2019). Influence of Scanner Position and Plot Size on the Accuracy of Tree Detection and Diameter Estimation Using Terrestrial Laser Scanning on Forest Inventory Plots. Remote Sensing. 2019; 11: 1602. DOI: http://doi.org/10.3390/rs11131602.
9. Liang X. et al. International benchmarking of terrestrial laser scanning approaches for forest inventories // ISPRS journal of photogrammetry and remote sensing. 2018; 144: 137-179. DOI: https://doi.org/10.1016/j.isprsjprs.2018.06.021
10. Pokoeva M.V., Yaroslavcev A.M. Ekologicheskie issledovaniya smeshannyh nasazhdeniy metodami distancionnogo zondirovaniya // Lesnoy vestnik / Forestry Bulletin, 2020; 24 (3): 33-38. DOI: https://doi.org/10.18698/2542-1468-2020-3-33-38.
11. Demidov D. N. Issledovanie algoritma ocenki parametrov predpoletnoy orientacii sredstv upravleniya bespilotnogo letatel'nogo apparata pri monitoringe molodyh lesnyh nasazhdeniy / D. N. Demidov // Lesotehnicheskiy zhurnal. 2021; 11 (4): 100-111. DOI: https://doi.org/10.34220/issn.2222-7962/2021.4/9.
12. Kabonen A. V., Ivanova N. V. Ocenka biometricheskih harakteristik derev'ev po dannym nazemnogo lidar i raznosezonnoy aerofotos'emki v iskusstvennyh nasazhdeniyah //Nature Conservation Research. Zapovednaya nauka. 2023; 8 (1): 64-83. DOI: https://dx.doi.org/10.24189/ncr.2023.005.
13. Nizametdinov N.F., Moiseev P.A., Vorob'ev I.B. Lazernoe skanirovanie i aerofotos'emka s BPLA v issledovanii struktury lesotundrovyh drevostoev Hibin // Izvestiya vuzov. Lesnoy zhurnal. 2021; 4: 9-22. DOI: https://doi.org/10.37482/0536-1036-2021-4-9-22.
14. Gao Q., Kan J. Automatic forest DBH measurement based on structure from motion photogrammetry //Remote Sensing. 2022; 9: 2064. DOI: https://doi.org/10.3390/rs14092064
15. Singh A. et al. An approach for tree volume estimation using RANSAC and RHT algorithms from TLS dataset //Applied Geomatics. 2022; 4:785-794. DOI: https://doi.org/10.1007/s12518-022-00471-x.
16. Salehi, Bahram & Jarahizadeh, Sina & Sarafraz, Amin. An Improved RANSAC Outlier Rejection Method for UAV-Derived Point Cloud. Remote Sensing. 2022; 14: 4917. DOI: http://doi.org/10.3390/rs14194917.
17. Yan, Guohang & He, Feiyu & Shi, Chunlei & Cai, Xinyu & Li, Yikang. Joint Camera Intrinsic and LiDAR-Camera Extrinsic Calibration. 2023; 11446-11452. DOI: https://doi.org/10.48550/arXiv.2202.13708.
18. Muhovič Jon, Pers Janez. Joint Calibration of a Multimodal Sensor System for Autonomous Vehicles. Sensors. 2023; 23: 5676. DOI: http://doi.org/10.3390/s23125676.
19. Zhu Y., Li C., Zhang Y. Online camera-lidar calibration with sensor semantic information //2020 IEEE International Conference on Robotics and Automation (ICRA). 2020; 970-4976. DOI: https://doi.org/10.1109/ICRA40945.2020.9196627
20. Huang, Biao & Zou, Shiping. (2022). A New Camera Calibration Technique for Serious Distortion. Processes. 2023; 10, 488. DOI: http://doi.org/10.3390/pr10030488.
21. Huang B. et al. A fast and flexible projector-camera calibration system //IEEE Transactions on Automation Science and Engineering. 2020; 3: 1049-1063. DOI: https://doi.org/10.1109/TASE.2020.2994223
22. Ly, Bao & Dyer, Ethan & Feig, Jessica & Chien, Anna & Bino, Sandra. (2020). Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. The Journal of investigative dermatology. 2020; 140: 3-12. DOI: http://doi.org/10.1016/j.jid.2019.11.003.
23. Dong, Lili & Zhang, Weidong & Xu, Wenhai. (2022). Underwater image enhancement via integrated RGB and LAB color models. Signal Processing Image Communication. 2022; 104: 116684. DOI: http://doi.org/10.1016/j.image.2022.116684.
24. Abdel-Hamid, Lamiaa. Glaucoma detection using statistical features: Comparative study in RGB, HSV and CIEL*a*b* color models. 2018; 110692V DOI: http://doi.org/10.1117/12.2524215.
25. Liu, Kangcheng & Cao, Muqing. (2023). DLC-SLAM: A Robust LiDAR-SLAM System With Learning-Based Denoising and Loop Closure. IEEE/ASME Transactions on Mechatronics. 2023; 5: 2876-2884 DOI: http://doi.org/10.1109/TMECH.2023.3253715.
26. Lv, Jiajun & Lang, Xiaolei & Xu, Jinhong & Wang, Mengmeng & Liu, Yong & Zuo, Xingxing. (2023). Continuous-Time Fixed-Lag Smoothing for LiDAR-Inertial-Camera SLAM. IEEE/ASME Transactions on Mechatronics. 2023; 4: 2259-2270. DOI: http://doi.org/10.1109/TMECH.2023.3241398.
27. Ren, Yujuan & Li, Tianzi & Xu, Jikun & Hong, Wenwen & Zheng, Yanchao & Fu, Biao. (2021). Overall Filtering Algorithm for Multiscale Noise Removal From Point Cloud Data. IEEE Access. 2021; 9: 110723-110734. DOI: http://doi.org/10.1109/ACCESS.2021.3097185.
28. Boslim, N & Abdul Shukor, Shazmin & Isa, S & Wong, R. (2021). Performance analysis of different classifiers in segmenting point cloud data. Journal of Physics: Conference Series. 2021; 2107: 012003. DOI: http://doi.org/10.1088/1742-6596/2107/1/012003.