Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
We present a scheme for modeling HF radio signal characteristics along paths of different lengths, which is based on the waveguide approach — the normal mode method. We use a representation of the recorded signal field in the form of Green function products of the angular operator, excitation coefficients, and reception coefficients of individual normal modes. Algorithms have been developed for calculating distance-frequency, frequency-angular, and amplitude characteristics of signals in large spatial regions through analysis and numerical summation of normal mode series. We have implemented a complex algorithm for simulating propagation conditions of HF radio signals, which includes a medium model, algorithms for calculating signal characteristics, and operational diagnostics of radio channel. We have compared the results of the HF signal propagation characteristic modeling and the experimental oblique sounding data obtained along paths of different lengths and orientation. To analyze experimental ionograms, determine the maximum usable frequencies for propagation modes along radio paths, we employ the method of automatic processing and interpretation of oblique sounding ionograms.
radio wave propagation, waveguide approach, radio path forecast, ionogram, radio channel diagnostics
1. Anderson S. Cognitive HF radar. J. Eng. 2019, vol. 2019, iss. 20, pp. 6772–6776. DOI:https://doi.org/10.1049/joe.2019.0537.
2. Anyutin A.P., Orlov Yu.I. Space-time geometrical theory of diffraction of frequency-modulated radio signals in a homogeneous dispersive medium. J. Commun. Technol. Electron. 1977, vol. 22, no. 10, pp. 2082–2090.
3. Avdeev V.B., Demin A.V., Kravtsov Yu.A., Tinin M.V., Yarygin A.P. The interferential integral method (review) Radiophys Quantum Electron. 1988, vol. 31, pp. 907–921.
4. Ayliffe J.K., Durbridge L.J., Gordon J.F., Gardiner-Garden R. The DST Group High-Fidelity, Multichannel Oblique Incidence Ionosonde. Radio Sci. 2019, vol. 54, no. 1, pp. 104–114. DOI:https://doi.org/10.1029/2018RS006681.
5. Baranov V.A., Karpenko A.L., Popov A.V. Evolution of Gaussian beams in the nonuniform Earth-ionosphere waveguide. Radio Sci. 1992, vol. 27, no. 2, pp. 307–314. DOI: 10.1029/ 91RS02639.
6. Baranov V.A., Popov A.V. Generalization of the parabolic equation for EM waves in a dielectric layer of nonuniform thickness. Wave Motion. 1993, vol. 17, no. 4, pp. 337–347. DOI:https://doi.org/10.1016/0165-2125(93)90013-6.
7. Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather. 2017, vol. 15, no.2, pp. 418–429. DOI:https://doi.org/10.1002/2016SW001593.
8. Bremmer H. Terrestrial Radio Waves. Theory of Propagation, Amsterdam, 1949, 343 p.
9. Cherkashin Yu.N. Application of parabolic equation method for calculation wavefields in inhomogeneous media Radio Engineering and Electronic Physics. 1971, vol. 16, no. 1, pp. 173–174. (In Russian).
10. Croft T.A., Hoogasian H. Exact ray calculations in a quasi-parabolic ionosphere with no magnetic field. Radio Sci. 1968, vol. 3, no. 1, pp. 69–74. DOI:https://doi.org/10.1002/rds19683169.
11. Davies K. Ionospheric Radio Waves. Blaisdell, London, 1969, 460 p.
12. Dyson P.L., Bennett J.A. A model of the vertical distribution of the electron concentration in the ionosphere and its application to oblique propagation studies. J. Atmos. Terr. Phys. 1988, vol. 50, no. 3, pp. 251–262. DOI:https://doi.org/10.1016/0021-9169(88)90074-8.
13. Grozov V.P., Ilyin N.V., Kotovich G.V., Ponomarchuk S.N. Software system for automatic interpretation of ionosphere sounding data. Pattern Recognition and Image Analysis. 2012, vol. 22, no. 3, pp. 458–463.
14. Gurevich A.V., Tsedilina E.E. Long distance propagation of HF radio waves. Berlin: Springer-Verlag. 1985.
15. Haselgrove J. Oblique ray paths in the ionosphere. Proceedings of the Physical Society. Section B. 1957, vol. 70, no. 7, pp. 653–662.
16. Ilyin N.V., Khakhinov V.V., Kurkin V.I., Nosov V.V., Orlov I.I., Ponomarchuk S.N. The theory of chirp-signal ionospheric sounding. Proceedings of ISAP’96, Chiba, Japan, 1996, pp. 689–692.
17. Ipatov E.B., Lukin D.S., Palkin E.A. Numerical realization of the Maslov canonical operator method for problems of shortwave radio propagation in the ionosphere of the earth. Radiophysics and Quantum Electronics. 1990, vol. 33, no. 5, pp. 411–420. DOI:https://doi.org/10.1007/BF01045406.
18. Ipatov E.B., Kryukovskii A.S., Lukin D.S., Palkin E.A., Rastyagaev D.V. Methods of simulation of electromagnetic wave propagation in the ionosphere with allowance for the distributions of the electron concentration and the Earth’s magnetic field. J. Commun. Technol. Electron. 2014, vol. 59, no. 12, pp. 1341–1348. DOI:https://doi.org/10.1134/S1064226914120079.
19. Ivanov D.V., Ivanov V.A., Ovchinnikov V.V., Elsukov A. Adaptive wideband equalization for frequency dispersion correction in HF band considering variations in interference characteristics and ionosphere parameters. ITM Web Conf. 2019a, vol. 30, no. 15021, pp. 1–6. DOI:https://doi.org/10.1051/itmconf/ 20193015021.
20. Ivanov V.A., Ivanov D.V., Ryabova N.V., Ryabova M.I., Chernov A.A., Ovchinnikov V.V. Studying the parameters of frequency dispersion for radio links of different length using software-defined radio based sounding system. Radio Sci. 2019b, vol. 54, no. 1, pp. 34–43. DOI:https://doi.org/10.1029/2018RS006636.
21. Ivanov V.A., Kurkin V.I., Nosov V.E., Uryadov V.P., Shumaev V.V. Chirp ionosonde and its application in the ionospheric research. Radiophysics and Quantum Electronics. 2003, vol. 46, iss. 11, pp. 821–851.
22. Kazantsev A.N., Lukin D.S., Spiridonov Yu.G. A method for studying the propagation of radio waves in an inhomogeneous magnetoactive ionosphere. Space Res. 1967, vol. 5, no. 4, pp. 593–600. (In Russian).
23. Kelso J.M. Ray Tracing in the lonosphere. Radio Sci. 1968, vol. 3, no. 1, pp. 1–12. DOI:https://doi.org/10.1002/rds1968311.
24. Krasnushkin P.E. The method of normal waves as applied to the problem of long-distance radio communications. Moscow: Publishing House of Moscow State University. 1947, 52 p. (In Russian).
25. Kravtsov Yu. A., Orlov Yu. I., Geometrical Optics of Inhomogeneous Media. Springer, Berlin. 1990.
26. Kryukovskii A.S., Lukin D.S., Palkin E.A., Rastyagaev D.V. Wave catastrophes: Types of focusing in diffraction and propagation of electromagnetic waves. J. Commun. Technol. Electron. 2006, vol. 51, no. 10, pp. 1087–1125. DOI:https://doi.org/10.1134/S1 064226906100019.
27. Kurkin V.I., Orlov I.I., Popov V.N. Technique for calculating the MUF of long radio paths. Research on geomagnetism, aeronomy and solar physics. Moscow: Nauka. 1975, iss. 33, pp. 71–74. (In Russian).
28. Kurkin V.I., Orlov I.I., Popov V.N. Normal Wave Technique in HF Radio Communication Problem. Moscow, Nauka Publ., 1981a. (In Russian).
29. Kurkin V.I., Orlov I.I., Popov V.N. Use of the normal wave method in study of long-distance radio paths. Radiophysics and Quantum Electronics. 1981b, vol. 24, iss. 3, pp. 203–206. DOI:https://doi.org/10.1007/BF01035369.
30. Kurkin V.I., Orlov I.I., Potekhin A.P. On a technique for calculating the amplitude of a quasi-monochromatic HF signal in the normal-wave method. Research on geomagnetism, aeronomy and solar physics. Moscow: Nauka. 1982, iss. 59, pp. 60–62. (In Russian).
31. Kurkin V.I., Ilyin N.V., Penzin M.S., Ponomarchuk S.N., Khakhinov V.V. HF radio channel modeling on the base of waveguide approach. Solar-Terr. Phys. 2023, vol. 9, iss. 4, pp. 83–94. DOI:https://doi.org/10.12737/stp-94202311.
32. Kurkin V.I., Medvedeva I.V., Podlesnyi A.V. Effect of sudden stratosphere warming on characteristics of medium-scale traveling ionospheric disturbances in the Asian region of Russia. Adv. Space Res. 2024, vol. 73, iss. 7. P. 3613–3623. DOI:https://doi.org/10.1016/j.asr.2023.09.020.
33. Lukin D.S., Spiridonov Yu.G. Application of the method of characteristics for the numerical solution of problems of radio wave propagation in an inhomogeneous and nonlinear medium. Radiotekhnika i Elektronika. 1969, vol. 14, no. 9, pp. 1673–1677. (In Russian).
34. Mullaly R. F. Ray paths in inhomogeneous anisotropic media. Australian Journal of Physics. 1962, vol. 15, no. 2, pp. 96–105. DOI:https://doi.org/10.1071/PH620096.
35. Podlesnyi A.V., Brynko I.G., Kurkin V.I., Berezovsky V.A., Kiselyov A.M., Petukhov E.V. Multifunctional chirp ionosonde for monitoring the ionosphere. Heliogeophys. Res. 2013, no. 4, pp. 24–31. (In Russian).
36. Podlesnyi A.V., Lebedev V.P., Ilyin N.V., Khahinov V.V. Implementation of the method for restoring the transfer function of the ionospheric radio channel based on the results of sounding the ionosphere with a continuous chirp signal. Electromagnetic waves and electronic systems. 2014, vol. 19, no. 1, pp. 63–70. (In Russian).
37. Ponomarchuk S.N., Grozov V.P., Ilyin N.V., Kurkin V.I. Backscatter Ionospheric Sounding by a Continuous Chirp Signal. Radiophysics and Quantum Electronics. 2022, vol. 64, iss. 8-9, pp. 591–604. DOI:https://doi.org/10.1007/s11141-022-10162-7.
38. Ponomarchuk S.N., Grozov V.P. Automatic interpretation of ionograms of oblique sounding with a continuous chirp signal based on hybrid algorithms. Proc. SPIE 12780, 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 127806R (17 October 2023). DOI:https://doi.org/10.1117/12.2688445.
39. Popov V.N., Potekhin A.P. On the propagation of decameter radio waves in the azimuth-symmetric “Earth-ionosphere” waveguide. Research on geomagnetism, aeronomy and solar physics. Moscow: Nauka. 1984, iss. 69, pp. 9–15. (In Russian).
40. Potekhin A.P., Orlov I.I. An approximate summation formula for a series of normal waves. Research on geomagnetism, aeronomy and solar physics. Moscow: Nauka. 1981, iss. 57, pp. 135–137. (In Russian).
41. Rao N.N. Bearing deviation in HF transionospheric propagation. I. Exact computations for some ionospheric models with no magnetic field. Radio Sci. 1968. vol. 3, no. 12, pp. 1113–1118. DOI:https://doi.org/10.1002/rds19683121113.
42. Zernov N.N., Gherm V.E., Zaalov N.Yu., Nikitin A.V. The generalization of Rytov's method to the case of inhomogeneous media and HF propagation and scattering in the ionosphere. Radio Sci. 1992, vol. 27, no. 2, pp. 235–244. DOI:https://doi.org/10.1029/91rs02920.
43. URL: http://ckp-rf.ru/ckp/3056/ (accessed January 31, 2024).