ESTIMATING THE AVERAGE ENERGY OF AURORAL ELECTRONS FROM 427.8 NM EMISSION INTENSITY MEASUREMENTS
Abstract and keywords
Abstract (English):
We propose a method for estimating average energy of precipitating electrons from 427.8 nm emission intensity measurements. This method is based on the experimental dependence of the ratio of λ630.0 and λ427.8 nm emission intensities on the λ427.8 emission intensity and model calculations of the dependence of the average auroral electron energy on the I₆₃₀.₀/I₄₂₇.₈ ratio. We present numerical estimates of the influence of three factors on this dependence: the shape of the auroral electron energy spectrum, the atomic oxygen concentration, and the NO concentration. The dependence of the average energy of the auroral electron flux on the 427.8 nm emission intensity is obtained and its analytical approximation is presented.

Keywords:
auroras, diagnostics, average energy, electron precipitation, emission intensity, 427.8 nm, 630.0 nm
Text
Text (PDF): Read Download
References

1. Cristensen A.B., Lyons L.R., Hecht J.H., Sivjee G., Meer R.R., Strickland D.J., et al. Magnetic field-aligned electric field acceleration and characteristics of the optical aurora. J. Geophys. Res. 1987, vol. 92, no. 6, pp. 6163–6167. DOI:https://doi.org/10.1029/JA092iA06p06163.

2. Dashkevich Zh.V., Ivanov V.E. Estimate of the NO concentration in the auroral region based on emission intensities of 391.4, 557.7, and 630.0 nm.Cosmic Res. 2017, vol. 55, no. 5, pp. 318–322. DOI:https://doi.org/10.1134/S0010952517050045.

3. Dashkevich Zh.V., Ivanov V.E. Estimated nitric oxygen density in auroras from ground-based photometric data. Solar-Terr. Phys. 2019, vol. 5, no. 1, pp. 58–61. DOI:https://doi.org/10.12737/stp-51201908.

4. Dashkevich Z.V., Sergienko T.I., Ivanov V.I. The Lyman-Birge-Hopfield bands in aurora. Planet. Space Sci. 1993, vol. 41, no. 1, pp. 81–87.

5. Dashkevich Zh.V., Zverev V.L., Ivanov V.E. Ratios of I630.0/I427.8 and I557.7/I427.8 emission intensities in auroras. Geomagnetism and Aeronomy. 2006, vol. 46, no. 3, pp. 366–370. DOI:https://doi.org/10.1134/S001679320603011X.

6. Dashkevich Zh.V., Ivanov V.E., Sergienko T.I., Kozelov B.V. Physicochemical model of the auroral ionosphere. Cosmic Res. 2017, vol. 55, pp. 88–100. DOI:https://doi.org/10.1134/S0010 952517020022.

7. Eather R.H., Mende S.B. Systematics in auroral energy spectra. J. Geophys. Res. 1972, vol. 77, no.4, pp.660–673. DOI:https://doi.org/10.1029/JA077i004p00660.

8. Gattinger R.L., Vallance Jones A. The intensity ratios of auroral emission features. Ann. Geophys. 1972, vol. 28, no.1, pp. 91–97.

9. Gattinger R.L., Llewellyn E.J., Vallance Jones A. On I(5577A) and I(7620A) auroral emissions and atomic oxygen densities. Ann. Geophys. 1996, vol. 14, no. 7, pp. 687–698. DOI:https://doi.org/10.1007/s00585-996-0687-1.

10. Germany G.A., Torr M.R., Richards P.G., Torr D.G. The dependence of modeled OI 1356 and N2 LBH auroral emissions on the neutral atmosphere. J. Geophys. Res. 1990, vol. 95, no.A6, pp. 7725–7733. DOI:https://doi.org/10.1029/JA095iA06p07725.

11. Ivanov V.E., Kozelov B.V. Transport of Electron and Proton-Hydrogen Atom Fluxes in the Earth Atmosphere. Apatity, Kola Science Center RAS, 2001, 260 p.

12. Rees M.H., Luckey D. Auroral electron energy derived from ratio of spectroscopic emission. 1. Model computations. J. Geophys. Res. 1974, vol. 79, no. 34, pp. 5181–5186. DOI: 10.1029/ JA07 9i034p05181.

13. Sergienko T.I., Ivanov V.E. A new approach to calculate the excitation of atmospheric gases by auroral electron impact. Ann. Geophys. 1993, vol. 11, no. 8, pp. 717–724.

14. Sharp W.E., Rees M.N., Stewart A.I. Coordinated rocket and satellite measurements of on auroral event. 2. The rocket observations and analysis. J. Geophys. Res. 1979, vol. 84, no. A5, pp. 1977-1984. DOI:https://doi.org/10.1029/JA084iA05p01977.

15. Shepherd G.G., Gerdjikova M.J. Thermospheric atomic oxygen concentrations inferred from the auroral I(5577)/I(4278) emission rate ratio. Planet. Space Sci. 1988, vol. 36, pp. 893–895. DOI:https://doi.org/10.1016/0032-0633(88)90096-7.

16. Swider W., Narcisi R.S. Auroral E-region: ion composition and nitric oxide. Planet. Space Sci. 1977, vol. 25, no. 2, pp. 103–116. DOI:https://doi.org/10.1016/0032-0633(77)90014-9.

17. Vallance Jones A., Gattinger R.L., Shin P., Meriwether J.W., Wickwar V.B., Kelly J. Optical and radar characterization of a short-lived auroral event at highlatitude. J. Geophys. Res. 1987, vol. 92, no. A5, pp. 4575–4589.

18. Vorobjev V.G., Yagodkina O.I., Katkalov Yu.V. Auroral precipitation model and its applications to ionospheric and magnetospheric studies. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 157–171. DOI:https://doi.org/10.1016/j.jastp.2013.05.007.

Login or Create
* Forgot password?