from 01.01.2003 until now
Nothern Energetics Research Centre KSC RAS (Research Associate)
Geophysical Center of the Russian Academy of Sciences
Apatity, Murmansk, Russian Federation
Schmidt Institute of Physics of the Earth, RAS
Moscow, Russian Federation
Schmidt Institute of Physics of the Earth, RAS
Geophysical Center RAS
Moscow, Russian Federation
Apatity, Russian Federation
Moscow, Russian Federation
We study the relationship between space weather disturbances and spatial distribution of failures in railway automatics at segments of Northern and October railways in 2001–2006. During the most intensive magnetic storms that caused numerous failures, latitude distribution of auroral electron precipitation and local geomagnetic disturbance, determined as mean absolute value of time derivative of the geomagnetic field horizontal component |dBH/dt|, are examined. We show that in magnetic storm main and recovery phases the segments, where the failures were recorded, correspond to the region of intense auroral precipitation and |dBH/dt| exceeded 5 nT/s. The relationship between position of auroral oval equatorial boundary and spatial distribution of failures is analyzed for individual magnetic storms and statistically for five years of observations. Both individual cases and statistic tests show that southward displacement of the auroral oval equatorial boundary correlates with increase in the proportion of failures at lower latitude railway segments.
space weather, magnetic storms, auroral oval, railways
1. Akasofu S.I. Interplanetary energy flux associated with magnetospheric substorms. Planet. Space Sci. 1979, vol. 27, pp. 425–431.
2. Beggan C. Sensitivity of geomagnetically induced currents to varying auroral electrojet and conductivity models. Earth Planet Space. 2015, vol. 67, 24. DOI:https://doi.org/10.1186/s40623-014-0168-9.
3. Boteler D.H. Modeling geomagnetic interference on railway signaling track circuits. Space Weather. 2021, vol. 19, e2020SW002609. DOI:https://doi.org/10.1029/2020SW002609.
4. Chisham G., Burrell A.G., Thomas E.G., Chen Y.-J. Ionospheric boundaries derived from auroral images. J. Geophys. Res.: Space Phys. 2022, vol. 127, e2022JA030622. DOI: 10.1029/ 2022JA030622.
5. Eroshenko E.A., Belov A.V., Boteler D., Gaidash S.P., Lobkov S.L., Pirjola R., Trichtchenko L. Effects of strong geomagnetic storms on Northern railways in Russia. Adv. Space Res. 2010, vol. 46, pp. 1102–1110. DOI: 10.1016/ j.asr.2010.05.017.
6. Feldstein Y.I. On morphology and auroral and magnetic disturbances at high latitudes. Geomagnetism and Aeronomy. 1963, vol. 3, pp. 138–149.
7. Holzworth R.H., Meng C.-I. Mathematical representation of the auroral oval. Geophys. Res. Lett. 1975, vol. 2, pp. 377–380. DOI:https://doi.org/10.1029/GL002i009p00377.
8. Hu Z.-J., Yang Q.-J., Liang J.-M., Hu H.-Q., Zhang B.-C., Yang H.-G. Variation and modeling of ultraviolet auroral oval boundaries associated with interplanetary and geomagnetic parameters. Space Weather. 2017, vol. 15, pp. 606–622. DOI:https://doi.org/10.1002/2016SW001530.
9. Hu Z.-J., Han B., Zhang Y., Lian H., Wang P., Li G., et al. Modeling of ultraviolet aurora intensity associated with interplanetary and geomagnetic parameters based on neural networks. Space Weather. 2021, vol. 19, e2021SW002751. DOI:https://doi.org/10.1029/2021SW002751.
10. Kasinskii V.V., Lyahov N.N., Ptitsyna N.G., Tyasto M.I., Villoresi G., Iucci N. Effect of geomagnetic disturbances on the operation of railroad automated mechanics and telemechanics. Geomagnetism and Aeronomy. 2007, vol. 47, pp. 676–680.
11. Kleimenova N.G., Kozyreva O.V., Manninen J., Ranta A. Unusual strong quasi-monochromatic ground Pc5 geomagnetic pulsations in the recovery phase of November 2003 superstorm. Ann. Geophys. 2005, vol. 23, pp. 2621–2634. DOI:https://doi.org/10.5194/angeo-23-2621-2005.
12. Kobzar A.I. Prikladnaya matematicheskaya statistika [Applied Mathematical Statistics]. Moscow, Fizmatlit Publ., 2006, 816 p. (In Russian).
13. Kostrominov A.M., Lozhkin R.O. Influence of geoinduced currents on impedance bonds with secondary windings used in railway automation circuits. [Izvestiya Peterburgskogo universiteta putei soobshcheniya] [Proceedings of Petersburg Transport University]. 2021, vol. 18, pp. 222–228. DOI:https://doi.org/10.20295/1815-588X-2021-2-222-228. (In Russian).
14. Love J.J., Hayakawa H., Cliver E.W. Intensity and impact of the New York Railroad superstorm of May 1921. Space Weather. 2019, vol. 17, pp. 1281–1292. DOI:https://doi.org/10.1029/2019SW002250.
15. Manninen J., Kleimenova N.G., Kozyreva O.V., Ranta A., Kauristie K., Mäkinen S., Kornilova T.A. Ground-based observations during the period between two strong November 2004 storms attributed to steady magnetospheric convection. J. Geophys. Res. 2008, vol. 113, A00A09. DOI:https://doi.org/10.1029/2007JA 012984.
16. Milan S.E. Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval. Geophys. Res. Lett. 2009, vol. 36, L18101. DOI:https://doi.org/10.1029/2009GL039997.
17. Newell P.T., Sotirelis T., Ruohoniemi J.M., Carbary J.F., Liou K., Skura J.P., Meng C.-I., Deehr C., Wilkinson D., Rich F.J. OVATION: Oval variation, assessment, tracking, intensity, and online nowcasting. Ann. Geophys. 2002, vol. 20, pp. 1039–1047. DOI:https://doi.org/10.5194/angeo-20-1039-2002.
18. Ohma A., Laundal K.M., Madelaire M., Hatch S.M., Gasparini S., Reistad J.P., et al. Robust estimates of spatiotemporal variations in the auroral boundaries derived from global UV imaging. J. Geophys. Res.: Space Phys. 2024, vol. 129, e2023JA032021. DOI:https://doi.org/10.1029/2023JA032021.
19. Patterson C.J., Wild J.A., Boteler D.H. Modeling the impact of geomagnetically induced currents on electrified railway signaling systems in the United Kingdom. Space Weather. 2023a, vol. 21, e2022SW003385. DOI:https://doi.org/10.1029/2022SW003385.
20. Patterson C.J., Wild J.A., Boteler D.H. Modeling “wrong side” failures caused by geomagnetically induced currents in electrified railway signaling systems in the UK. Space Weather. 2023b, vol. 21, e2023SW003625. DOI:https://doi.org/10.1029/2023SW003625.
21. Pilipenko V.A., Chernikov A.A., Soloviev A.A., Yagova N.V., Sakharov Ya.A., Kostarev D.V., et al. Influence of space weather on the reliability of the transport system functioning at high latitudes. Russian Journal of Earth Sciences. 2023, vol. 23, ES2008. DOI:https://doi.org/10.2205/2023 ES000824. (In Russian).
22. Ptitsyna N.G., Kasinskii V.V., Villoresi G., Lyahov N.N., Dorman L.I., Iucci N. Geomagnetic effects on mid-latitude railways: A statistical study of anomalies in the operation of signaling and train control equipment on the East-Siberian Railway. Adv. Space Res. 2008, vol. 42, pp. 1510–514. DOI:https://doi.org/10.1016/j.asr. 2007.10.015.
23. Qian X., Tian H., Yin Y., Li Y., Liu M., Jiang Z. Geomagnetic Storms’ Influence on Intercity Railway Track Circuit. Urban Rail Transit. 2016, vol. 2, pp. 85–91. DOI:https://doi.org/10.1007/s40864-016-0040-2.
24. Sakharov Y.A., Yagova N.V., Pilipenko V.A. Pc5/Pi3 geomagnetic pulsations and geomagnetically induced currents. Bull. Russian Acad. Sci. Phys. 2021, vol. 85, pp. 329–333. DOI:https://doi.org/10.3103/S1062873821030217.
25. Viljanen A., Nevanlinna H., Pajunpaa K., Pulkkinen A. Time derivative of the horizontal geomagnetic field as an activity indicator. Ann. Geophys. 2001, vol. 19, pp. 1107–1118. DOI:https://doi.org/10.5194/angeo-19-1107-2001.
26. Viljanen A., Tanskanen E.I., Pulkkinen A. Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Ann. Geophys. 2006, vol. 24, pp. 725–733. DOI:https://doi.org/10.5194/angeo-24-725-2006.
27. Vorobjev V.G., Rezhenov B.V., Starkov G.V., Gromova L.I., Feldstein Ya.I. Variations of the boundaries of plasma precipitation and auroral luminosity in the nighttime sector. Geomagnetism and Aeronomy. 2000, vol. 40, pp. 344–350.
28. Vorobjev V.G., Yagodkina O.I. Effect of geomagnetic activity on the global distribution of auroral precipitation zones. Geomagnetism and Aeronomy. 2005, vol. 45, pp. 438–444.
29. Vorobjev V.G., Yagodkina O.I., Katkalov Y. Auroral precipitation model and its applications to ionospheric and magnetospheric studies. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 157–171. DOI:https://doi.org/10.1016/j.jastp.2013.05.007.
30. Wik M., Viljanen A., Pirjola R., Pulkkinen A., Wintoft P., Lundstedt H. Calculation of geomagnetically induced currents in the 400 kV power grid in Southern Sweden. Space Weather. 2008, vol. 6, S07005. DOI:https://doi.org/10.1029/2007SW000343.
31. Wik M., Pirjola R., Lundstedt H., Viljanen A., Wintoft P., Pulkkinen A. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems. Ann. Geophys. 2009, vol. 27, pp. 1775–1787. DOI:https://doi.org/10.5194/angeo-27-1775-2009.
32. Wintoft P., Viljanen A., Wik M. Extreme value analysis of the time derivative of the horizontal magnetic field and computed electric field. Ann. Geophys. 2016, vol. 34, pp. 485–491. DOI:https://doi.org/10.5194/angeo-34-485-2016.
33. Yagova N.V., Rozenberg I.N., Gvishiani A.D., Sakharov Ya.A., Garanin S.L., Voronin V.A., et al. Study of geomagnetic activity impact on functioning of railway automatics in Russian Arctic. Arktika: ekologiya I ekonomika [Arctic: Ecology and Economy]. 2023, vol. 13, pp. 341–352. DOI:https://doi.org/10.25283/2223-4594-2023-3-341-352. (In Russian).