Национальный исследовательский Томский политехнический университет (заместитель директора)
Томская область, Россия
Россия
Россия
Россия
Россия
Томская область, Россия
Томская область, Россия
Томская область, Россия
Томская область, Россия
ГРНТИ 76.03 Медико-биологические дисциплины
ГРНТИ 76.33 Гигиена и эпидемиология
ОКСО 14.04.02 Ядерные физика и технологии
ОКСО 31.06.2001 Клиническая медицина
ОКСО 31.08.08 Радиология
ОКСО 32.08.12 Эпидемиология
ББК 51 Социальная гигиена и организация здравоохранения. Гигиена. Эпидемиология
ББК 534 Общая диагностика
ТБК 5708 Гигиена и санитария. Эпидемиология. Медицинская экология
ТБК 5712 Медицинская биология. Гистология
ТБК 5734 Медицинская радиология и рентгенология
ТБК 6212 Радиоактивные элементы и изотопы. Радиохимия
Несмотря на высокую эффективность применения ПЭТ с 18F-ФДГ в диагностике, стадировании, мониторинге и прогнозе лечения лимфопролиферативных заболеваний, применение этого метода в нашей стране ограничено из-за высокой стоимости исследования и недостаточного количества ПЭТ-центров. В связи с этим представляется актуальным проведение научных исследований, направленных на применение известных и разработку оригинальных радиофармпрепаратов (РФП) для визуализации лимфом методом однофотонной эмиссионной компьютерной томографии (ОФЭКТ). В данном обзоре рассмотрены основные РФП (67Ga-цитрат, 201Tl-хлорид, 199Tl-хлорид, 99mTc-метокси-изобутил-изонитрил, 99mTc-тетрофосмин, 111In-октреотид), применение которых возможно для визуализации лимфом с помощью ОФЭКТ. Проанализированы особенности их применения, механизмы действия, возможности их использования при различных морфологических вариантах и локализациях поражения. Представлены результаты применения инновационного РФП 99mTc-1-тио-D-глюкоза, который является перспективным для диагностики, стадирования и мониторинга лимфопролиферативных заболеваний.
лимфопролиферативные заболевания, лимфома Ходжкина, неходжкинские лимфомы, однофотонная эмиссионная компьютерная томография, 67Ga-цитрат, таллий-201, таллий-199, 99mTc-метокси-изобутил-изонитрил, 99mTc-тетрофосмин, 111In-октреотид, 99mTc-1-Тио-D-глюкоза
1. Aslanidi IP, Mukhortova OV, Shurupova IV, Derevyanko EP, Katunina TA, Pivnik AV, Stroyakovskii DL. Positron emission tomography: refining the stage of the disease in malignant lymphomas. Clinical Oncohematology. Fundamental Research and Clinical Practice. 2010;3(2):119-29. (Russian).
2. Chernov VI, Dudnikova EA, Goldberg VE, et al. Positron Emission Tomography in the Diagnosis and Monitoring of Lymphomas. Medical Radiology and Radiation Safety. 2018;63(6):42-50. (Russian).
3. Front D, Israel O. Present state and future role of gallium-67 scintigraphy in lymphoma. J Nucl Med. 1996;37(3):530-2.
4. Novikov SN, Girshovich MM. Diagnosis and staging of Hodgkin lymphoma. Problems of Tuberculosis and Lung Diseases. 2007;8(2):65-72.
5. Kostakoglu L, Goldsmith S.J. Fluorine-18 fluorodeoxyglucose positron emission tomography in the staging and followup of lymphoma: is it time to shift gears? Eur J Nucl Med. 2000;27(10):1564-78.
6. Palumbo B, Sivolella S, Palumbo I, et al. 67Ga-SPECT/CT with a hybrid system in the clinical management of lymphoma. Eur J Nucl Med and Molec Imaging. 2005;32(9):1011-7.
7. Lin J, Leung WT, Ho SKW, et al. Quantitative evaluation of thallium-201 uptake in predicting chemotherapeutic response of osteosarcoma. Eur J Nucl Med. 1995;22(6):553-5.
8. Haas RLM, Vald´es-Olmos RA, Hoefnagel CA, et al. Thallium-201-chloride scintigraphy in staging and monitoring radiotherapy response in follicular lymphoma patients. Radiother and Oncol. 2003;69(3):323-8.
9. Kostakoglu L, Goldsmith SJ. Lymphoma imaging: nuclear medicine. Cancer Treatment and Research. 2006;131:363-412.
10. Arbab AS, Koizumi K, Hiraike S, et al. Will thallium-201 replace gallium-67 in salivary gland scintigraphy? J Nucl Med. 1996;37(11):1819-23.
11. Lorberboym M, Estok L, Machac J, et al. Rapid differential diagnosis of cerebral toxoplasmosis and primary central nervous system lymphoma by thallium-201 SPECT. J Nucl Med. 1996;37(7):1150-4.
12. Lorberboym M, Wallach F, Estok L, et al. Thallium-201 retention in focal intracranial lesions for differential diagnosis of primary lymphoma and nonmalignant lesions in AIDS patients. J Nucl Med. 1998;39(8):1366-9.
13. Skiest DJ, Erdman W, Chang WE, et al. SPECT thallium-201 combined with Toxoplasma serology for the presumptive diagnosis of focal central nervous system mass lesions in patients with AIDS. J Infection. 2000;40(3):274-81.
14. Lishmanov YuB, Chernov VI, Krivonogov NG, Glukhov GG, Maslova LV. Perfusion scintigraphy of myocardium with 199Tl-chloride in the experiment. Med Radiology and Radiation Safety. 1988;33(3):13-6. (Russian).
15. Lishmanov YuB, Chernov VI, Triss SV, Mazurin IYu. Scintigraphy of the myocardium with thallium-199. Med Radiology. 1990(4):35-8. (Russian).
16. Chernov VI, Medvedeva AA, Sinilkin IG, Zelchan RV, Bragina OD, Skuridin VS. Experience of developing innovative radiopharmaceuticals in the Tomsk Research Institute of Oncology. Siberian Oncol J. 2015 (Application 2):45-7. (Russian).
17. Chernov VI, Medvedeva AA, Sinilkin IG, Zelchan RV, Bragina OD, Skuridin VS. Innovative radiopharmaceuticals for oncology: development of Tomsk National Research Medical Center. Malignant Tumors. 2017;7(S3):52-6. (Russian).
18. Lishmanov YuB, Chernov VI, Krivonogov NG, Efimova IYu, Vesnina ZhV, Zavadovsky KV. Radionuclide research methods in diagnosis of cardiovascular diseases. Siberian Med J (Tomsk). 2010;25(4-1):8-13. (Russian).
19. Karpov RS, Pavlyukova EN, Vrublevsky AV, Chernov VI, Usov VYu. Modern methods of diagnosing coronary atherosclerosis. Siberian Sci Med J. 2006;26(2):105-117. (Russian).
20. Chernov VI, Garganeyeva AA, Vesnina ZhV, Lishmanov YuB. Perfusion scintigraphy of myocardium in evaluation of the results of course treatment with trimetazidine in patients with ischemic heart disease. Cardiology. 2001;41(8):14-6. (Russian).
21. Titskaya AA, Chernov VI, Slonimskaya EM, Sinilkin IG. Imaging with 199Tl in the diagnosis of breast cancer. Siberian Oncol J. 2008(6):5-10. (Russian).
22. Zelchan RV, Chernov VI, Medvedeva AA, Sinilkin IG, Bragina OD, Chizhevskaya SYu, Choinzonov EL. Use of single-photon emission computer tomography with 99mTc-MIBI and 199Tl-chloride in the diagnosis and evaluation of the efficacy of chemotherapy for primary and recurrent tumors of the larynx and larynx. Eurasian Cancer J. 2016;1(8):9-16. (Russian).
23. Kostakoglu L, Elahi N, K¨ıratl¨ı P, et al. Clinical validation of the influence of P-glycoprotein on technetium-99m-sestamibi uptake in malignant tumors. J Nucl Med. 1997;38(7):1003-8.
24. Rodriguez C, Commes T, Robert J, Rossi J-F. Expression of P-glycoprotein and anionic glutathione S-transferase genes in non-Hodgkin’s lymphoma. Leukemia Res. 1993;17(2):149-56.
25. Liu Q, Ohshima K, Kikuchi M. High expression ofMDR-1 gene and P-glycoprotein in initial and re-biopsy specimens of relapsed B-cell lymphoma. Histopathology. 2001;38(3):209-16.
26. Piwnica-Worms D, Chiu M.L, Budding M, et al. Functional imaging of multidrugresistant P-glycoprotein with an organotechnetium complex. Cancer Res. 1993;53(5):977-84.
27. Rao VV, Chiu ML, Kronauge JF, Piwnica-Worms D. Expression of recombinant human multidrug resistance P-glycoprotein in insect cells confers decreased accumulation of technetium-99m-sestamibi. J Nucl Med. 1994;35(3):510-515.
28. Song HC, Lee JJ, Bom HS, et al. Double-phase Tc-99m MIBI scintigraphy as a therapeutic predictor in patients with non-Hodgkin’s lymphoma. Clin Nucl Med. 2003;28(6):457-62.
29. Kao CH, Tsai SC, Wang JJ, et al. Evaluation of chemotherapy response using technetium-99m-sestamibi scintigraphy in untreated adult malignant lymphomas and comparison with other prognosis. BioMed Research International 11 factors: a preliminary report. Int J Cancer. 2001;95(4):228-31.
30. Liang JA, Shiau YC, Yang SN, et al. Using technetium-99m-tetrofosmin scan to predict chemotherapy response of malignant lymphomas, compared with P-glycoprotein and multidrug resistance related protein expression. Oncol Reports. 2002;9(2):307-12.
31. Lazarowski A, Dupont J, Fernández J, et al. 99mTechnetium-Sestamibi uptake inmalignant lymphomas. Correlation with chemotherapy response. Lymphatic Res Biol. 2006;4(1):23-8.
32. Kelly JD, Forster AM, Higley B, et al. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med. 1993;34(2):222-7.
33. Ding HJ, Shiau YC, Tsai SC, et al. Uptake of 99mTc tetrofosmin in lymphoma cell lines: a comparative study with 99mTc sestamibi. Appl Radiat Isotop. 2002 Vol. 56(6):853-6.
34. Aigner RM, Fueger GF, Zinke W, Sill H. 99mTc-tetrofosmin scintigraphy in Hodgkin’s disease. Nucl Med Commun. 1997;18(3):252-7.
35. Chernov VI, Bragina OD, Zelchan RV, Medvedeva AA, Sinilkin IG, Larkina MS, et al. Labeled analogues of somatostatin in the therapy of neuroendocrine tumors. Med Radiology and Radiation Safety. 2017;62(3):42-9. (Russian).
36. Chernov VI, Bragina OD, Sinilkin IG, Medvedeva AA, Zelchan RV. Radionuclide theranostics of malignant tumors. Bull Roentgenol Radiol. 2016;97(5):306-13. (Russian).
37. Ferone D, Semino C, Boschetti M, et al. Initial staging of lymphoma with octreotide and other receptor imaging agents. Sem Nucl Med. 2005;35(3):176-85.
38. Valencak J, Trautinger F, Raderer M, et al. Somatostatin receptor scintigraphy in primary cutaneous T- and B-cell lymphomas. J Eur Acad Dermatol Venereol. 2010;24(1):13-7.
39. Raderer M, Traub T, Formanek M, et al. Somatostatin receptor scintigraphy for staging and follow-up of patients with extraintestinal marginal zone B-cell lymphoma of the mucosa associated lymphoid tissue (MALT)-type. Brit J Cancer. 2001;85(10):1462-6.
40. Raderer M, Valencak J, Pfeffel F, et al. Somatostatin receptor expression in primary gastric versus nongastric extranodal B-cell lymphoma of mucosa-associated lymphoid tissue type. J Nat Cancer Institute. 1999;91(8):716-8.
41. Li S, Kurtaran A, Li M, et al. 111In-DOTA-DPhe1-Tyr3-octreotide. 111In-DOTA-lanreotide and 67Ga citrate scintigraphy for visualisation of extranodal marginal zone B-cell lymphoma of the MALT type: a comparative study. Eur J Nucl Med Molec Imaging. 2003;30(8):1087-95.
42. Zeltchan R, Medvedeva A, Sinilkin I, Chernov V, Stasyuk E, Rogov A, et al. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose. AIP Conference Proceedings. 2016;P.020072-1-020072-4.
43. Zeltchan R, Medvedeva A, Sinilkin I, Chernov V, Bragina O, Stasyuk E, et al. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conference Series: Materials Science and Engineering. 2016;P. 012054.
44. Zelchan RV, Medvedeva AA, Sinilkin IG, Bragina OD, Chernov VI, Stasyuk ES, et al. A study of the functional suitability of the tumor-neutral radiopharmaceutical 99mTc-1-tio-D-glucose in the experiment. Molecular Med . 2018;16(2):54-7. (Russian).
45. Chernov VI, Medvedeva AA, Sinilkin IG, Zelchan RV, Bragina OD. Development of radiopharmaceuticals for radionuclide diagnostics in oncology. Med Visualization. 2016(2):63-6 (Russian).
46. Seidensticker M, Ulrich G, Muehlberg FL, et al. Tumor Cell Uptake of 99mTc-Labeled 1-Thio-β-D-Glucose and 5-Thio-D-Glucose in Comparison with 2-Deoxy-2-[18F]Fluoro-D-Glucose in vitro P. Kinetics, Dependencies, Blockage and Cell Compartment of Accumulation. Mol Imaging Biol. 2014(16):189-98.
47. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009;121(1):29-40.
48. Ong LC, Jin Y, Song IC, et al. 2-[18F]-2-deoxy-D-glucose (FDG) uptake in human tumor cells is related to the expression of GLUT-1 and hexokinase II. Acta Radiol. 2008;49(10):1145-53.
49. Chernov VI, Dudnikova EA, Zelchan RV, et al. The first experience of using 99mTc-1-thio-D-glucose for single-photon emission computed tomography imaging of lymphomas. Siberian J Oncol. 2018;17 (4):81-7. DOI:https://doi.org/10.21294/1814-4861-2018-17-4-81-7. (Russian).