Белгородская область, Россия
аспирант с 01.01.2017 по настоящее время
Россия
УДК 69 Строительство. Строительные материалы. Строительно-монтажные работы
ГРНТИ 67.11 Строительные конструкции
ОКСО 08.06.01 Техника и технологии строительства
ББК 385 Строительные конструкции
ТБК 54 Строительство
BISAC TEC005020 Construction / Contracting
Полимеркомпозитные материалы (FRP) быстро завоевывают популярность в различных областях гражданского строительства. На протяжении десятилетий данные материалы применялись для усиления конструкций, не подверженных воздействию огня, таких как мосты. Для применения данного способа усиления для увеличения несущей способности конструкций зданий и сооружений, огнестойкость является важным свойством, которое следует учитывать для любого материала. Из-за небольшого количества исследований в этой области для данных конструкций отсутствует техническая документация, регламентирующая свойства сцепления и механические характеристики при повышенных температурах, необходимые для проектирования. Существует также необходимость разработки простого метода расчета огнестойкости и толщины изоляционного материала для усиливаемой конструкции. Данная статья объединяет существующие исследования работы волокон и связующего системы усиления при высоких температурах. Также в статье приведены экспериментальные результаты и численные исследования при повышенных температурах различных авторов для изолированных, а также неизолированных железобетонных конструкций, усиленных полимеркомпозитными материалами. Кроме того, приводится сравнение огнестойкости двух основных методов усиления полимеркомпозитными материалами: системы внешнего армирования и метода затяжки. Усиление конструкций методом затяжки обладает большими преимуществами по сравнению с усилением методом внешнего армирования.
железобетонных конструкции, усиление, огнестойкость, углеволокно, полимеркомпозитные материалы, метод внешнего армирования
Введение. В последние десятилетия как в отечественной практике, так и за рубежом было проведено множество различных экспериментальных и численных исследований усилению железобетонных конструкций полимеркомпозитными материалами [1–30]. Полимеркомпозиты быстро завоевывают признание в различных областях гражданского строительства. В основном данный метод широко используют для усиления конструкций, при проектировании которых не требуется учитывать огнестойкость, например, при усилении мостовых конструкций. Хотя существует и более широкая область применения, включая жилые и общественные, а также промышленные здания, где пожарная безопасность является ключевой проблемой [31].
Конструкции, усиленные внешним армированием полимеркомпозитными материалами должны отвечать высоким требования по огнестойкости, изложенным в нормативных документах. Изучению влияния высоких температур на физико-механические характеристики материалов системы усиления посвящено множество исследований [32–39].
Применение полимеркомпозитных материалов осуществляется с помощью одного из двух известных методов армирования: внешнее армирование (EBR) и метод затяжки (NSM). Оба имеют несколько преимуществ и недостатков по сравнению друг с другом.
При использовании системы внешнего армирования (EBR) холсты или ламинаты наносят на поверхность конструкции, таким образом увеличивая жесткость и прочность элемента усиления. Кроме того, при использовании данного метода увеличивается прочность бетона на изгиб, сдвиг и кручение, что повышает несущую способность железобетонной конструкции.
В методе затяжки (NSM) армирование устанавливается в каналах, вырезанных на поверхности конструкции, которые затем заполняются связующим веществом, таким как эпоксидная смола или цементный раствор.
Основная часть. Метод внешнего армирования (EBR). Композитные материалы нашли свое применение для усиления железобетонных конструкций, а именно балок, плит, колонн и т.д., в случаях, когда традиционные методы усиления неэффективны. При усилении таким методом холст полимеркомпозитного материала с помощью клея на основе эпоксидной смолы приклеивается к поверхности усиливаемой конструкции. Этот метод прост и эффективен с точки зрения, как стоимости, так и механических характеристик, а также устойчив к коррозии в отличие от других альтернатив, таких как усиление стальными пластинами. Системы внешнего армирования из полимеркомпозитных материалов обеспечивают значительное увеличение прочности и жесткости, не увеличивая собственный вес конструкции. Область применения данного метода усиления постоянно увеличивается [40].
Авторы [41] провели испытания систем внешнего армирования после воздействия высоких температур, для исследования следующих параметров:
- остаточная предельная прочность на растяжение, деформации при разрушении и модуль упругости однонаправленных полимеркомпозитных материалов;
- остаточное сцепление между слоями полимеркомпозита в системе усиления, что важно в случаях, где контакт между слоями существенно влияет на работу конструкции, например, при усилении колонн обоймами;
- остаточное сцепление шва соединения полимеркомпозит-бетон.
Кривые термогравиметрического анализа (TGA – метод термического анализа, при котором регистрируется изменение массы образца в зависимости от температуры), представленные на рисунке 1, показывают, что стекловолокно сохранило почти всю свою первоначальную массу при температурах до 800 °C, в то время как холсты из углеродного волокна потеряли около 10 % своей начальной массы при таких же температурах. Ни один из холстов не потерял заметной массы при температуре ниже 400 °C. Оба вида эпоксидных смол потеряли 90 % своей массы при температуре 800 °C, причем 80–90 % этой потери происходит при температурах от 300 °C до
400 °C.
Для достижения требуемого температурного воздействия образцы хранили в электрической печи и нагревали до заданной максимальной температуры со скоростью 10 °С/мин. Максимальную температуру поддерживали постоянной в течение 3 часов, а затем оставляли охлаждаться до комнатной температуры, для имитации воздействия огня при стандартном пожаре. После охлаждения образцы были испытаны.
Рис. 1. Результаты термогравиметрического анализа различных составляющих системы усиления полимеркомпозитными материалами [41]
На основании экспериментальных данных можно сделать вывод, что остаточная прочность на растяжение систем внешнего армирования снижалась более чем на 50 % при температурах, приближающихся к температуре стеклования эпоксидных полимерных матриц. При температурах выше 100 °C системы усиления были способны сохранять около 80 % их прочности на растяжение. Таким образом, температура воздействия до 200 °C может быть допустимой. Сцепление между холстами в системе и сцепление полимеркомпозита с бетоном сохранили 80 % своей прочности при температуре на 150 °C выше, чем температура стеклования полимера Tg, т.е. примерно при 250 °C.
В работе [42] были проведены исследования работы железобетонных балок, усиленных углепластиком (CFRP), при воздействии огня. Программа эксперимента состояла из испытания на прочность по нормальным сечениям 24-х железобетонных балок с размерами поперечного сечения 100×150 мм, усиленных углепластиком шириной 100 мм и толщиной 1 мм, и изолированных одним слоем противопожарной изоляции на основе цемента толщиной 15–20 мм. Для оценки эффективности противопожарной изоляции испытания проводились по стандартной методике Британского института стандартов BSI 1987 г. Ненагруженные балки подвергались воздействию огня в течение 1 часа, а затем нагружались поэтапно вплоть до разрушения. На рисунке 2 показана температура разных участков образца.
Результаты испытаний показали, что адгезионная связь между бетоном и углепластиком была разрушена в результате пожара из-за нарушения структуры связующего материала, в то время как углеволокно сохранило свою целостность. На основании полученных экспериментальных данных можно сделать вывод, что данной противопожарной изоляции недостаточно для поддержания температуры связующего ниже температуры его стеклования Tg более 30-45 мин.
Авторы [43] провели исследование огнестойкости двух полноразмерных балок таврового поперечного сечения, усиленных углеволокном, несущая способность которых после усиления увеличилась на 15 %. Углепластик был защищен вермикулитовой изоляцией, нанесенной на нижнюю и боковые поверхности элементов толщиной 25 мм для первого образца и 38 мм для второго образца. Балки были нагружены на 48 % от теоретической разрушающей нагрузки при комнатной температуре, а затем подвержены воздействию высоких температур. Оба образца показали 240-минутную огнестойкость. Однако в обоих случаях температура стеклования связующего Tg = 93 °C была достигнута в интервале между 35 и 36 минутами в первой балке и между 55 и 57 минутами во второй балке.
В статье [44] дополнительно расширено описанное выше исследование, испытаниями двух дополнительных балок таврового поперечного сечения, с противопожарной изоляцией 40 мм из цементного раствора, нанесенной распылением на боковые и нижние грани, и предварительно нагруженных до 71 % их теоретической разрушающей нагрузки при комнатной температуре. Полученные результаты были аналогичны результатам [43], несмотря на достижение температуры стеклования адгезивом Tg менее чем за 30 минут. Ни одна из балок не разрушилась, и их огнестойкость составила 240 мин. Высокий уровень огнестойкости был обеспечен благодаря системе противопожарной изоляции, поддерживающей низкие температуры. Анкеровка углепластика на приопорных участках балок также могла повысить их огнестойкость [45].
Авторы [46] испытали 4-е железобетонные балки, усиленные углеволокном под нагрузкой, при этом прирост прочности после усиления составил 50 %. Образцы подвергались воздействию расчетного пожара для общественного здания по стандартной методике Еврокода 1. Все балки были нагружены по схеме четырехточечного изгиба до половины их теоретической разрушающей нагрузки. Длина балок составляла 3,66 м. Приопорные зоны анкеровки были изолированы, поэтому только центральная часть пролета усиленной балки (2,44 м) была непосредственно подвергнута воздействию огня.
Результаты испытания показали, что балки, усиленные углеволокном, могут выдерживать воздействие огня в течение более 3 часов. Это связано с наличием противопожарной изоляции, которая сыграла важную роль в поддержании низкой температуры арматуры в течение всего времени испытания на огнестойкость. Стальная арматура сохраняла почти полную несущую способность в течение всего периода испытаний, так как арматура не теряет существенной прочности при температуре до 400 °C. Углепластик отклеился от поверхности балки между 20 и 25 минутой испытания, когда температура на границе раздела бетон-углепластик достигла температуры стеклования клея Tg = 82 °C. Нарушение сцепления под воздействием высоких температур уменьшило жесткость усиленных балок. Ни одна из балок не вышла из строя по огнестойкости.
В работе [47] были проведены испытания на огнестойкость шести железобетонных балок, усиленных полосами из углепластика, под нагрузкой равной половине их теоретической разрушающей нагрузки. Ламинаты углепластика были изолированы либо плитами силикат кальция (CS), либо цементным раствором на основе вермикулита/перлита. Толщина изоляции составляла 25–40 мм. Зоны анкеровки находились за пределами печи. Данный метод противопожарной изоляции позволил нагретому ламинату работать как затяжка, закрепленная в приопорных зонах, где соединение углепластика с бетоном оставалось относительно неповрежденным.
Углепластик выключился из работы, когда в одной из приопорных зон анкеровки нарушилось сцепление, что произошло в результате достижения в шве соединения температуры равной температуре стеклования клея Tg, составившей
55 °C. Из рисунка 3 видно, что разрушение шва системы усиления произошло из-за снижения жесткости балки, т.е. внезапного увеличения прогиба в середине пролета. Противопожарная изоляция способствовала значительному увеличению огнестойкости системы усиления, причем ее величина варьировалась от 23 минут до 167 минут для различных типов изоляции.
Рис. 3. Увеличение сдвиговых деформаций шва в середине пролета в зависимости от продолжительности воздействия высоких температур [47]
Авторы [46] для расширения экспериментальной базы провели исследование влияния противопожарной изоляции на несущую способность балок, усиленных углеволокном, подверженных воздействию огня. Для этого было изготовлено 4-е железобетонные балки прямоугольного поперечного сечения в соответствии со спецификациями Американского института бетона (ACI 318). Железобетонные балки с прочностью бетона 55 МПа в день испытания были усилены углеволокном (толщиной 2 мм и шириной 203 мм), что привело к увеличению теоретической несущей способности на 50 %. Для усиления использовали двухкомпонентный эпоксидный клей с температурой стеклования Tg равной 82 °С. Для двух балок углеволокно приклеивали по всей длине для изучения влияния приопорной зоны анкеровки на огнестойкость конструкции два образца второй серии были усилены ламинатами углепластика для оценки эффекта расслоения шва соединения углепластик-бетон. На образцы была нанесена противопожарная изоляция на основе вермикулита (изоляция VG) и эпоксидного клея. Для первой серии балок температура в установке увеличивалась, а затем постепенно уменьшалась, в то время как образцы второй серии были испытаны в условиях, соответствующих стандартному пожару. Результаты испытаний приведены на рисунке 4.
Температура поперечных сечений образцов второй серии увеличивалась на протяжении всего испытания, поскольку они подвергались воздействию стандартного огня, а в сечениях образцов первой серии температура сначала увеличивалась до максимального значения, а затем начинала снижаться. Снижение температуры может быть связано с фазой охлаждения при пожаре. Из-за развития трещин температура в системе усиления повысилась и привела к локальному горению эпоксидной смолы, поскольку температура стеклования Tg эпоксидных смол невелика (82 °C).
Из-за образования защитного слоя полукокса в результате пиролиза температура на границе шва углепластик-бетон медленно увеличивалась. Средняя температура стальной арматуры оставалась ниже 400 °C в течение всего периода испытаний, что способствовало минимальной потере прочности арматуры, т. е. стальная арматура сохраняла полную прочность на протяжении всего испытания. Таким образом, можно сделать вывод о том, что эффективная схема изоляции в усиленных железобетонных балках имеет решающее значение для обеспечения необходимой огнестойкости.
Рис. 4. График зависимости время-прогиб железобетонных балок, усиленных углеволокном с противопожарной изоляцией, подверженных воздействию огня [46]
В статье [49] описаны испытания 4-х полноразмерных железобетонных балок таврового поперечного сечения, усиленных ламинатами углепластика и подвергнутых воздействию огня под нагрузкой по схеме четырехточечного изгиба. В ходе испытания изучалось влияние уровня нагружения балки (50–65 % от теоретической несущей способности до усиления) и наличие U-образной системы противопожарной изоляции толщиной 25 мм. Результаты испытаний приведены на рисунке 5. На основании экспериментальных данных можно сделать вывод, что ламинаты углепластика в первую очередь отрываются только в зоне чистого изгиба балки во время пожара. В результате чего, система усиления методом затяжки под воздействием высоких температур не выходит из строя полных 210 минут.
В работе [50] были проведены испытания железобетонных балок двух серий (по 6 образцов в каждой серии) пролетом 3,15 м, подверженных воздействию огня. Из 12 балок: 2 – эталонные образцы, а 10 – усиленные железобетонные балки, дополнительно защищенные противопожарной изоляцией. Изолированные балки были усилены методом затяжки полосами углепластика, в качестве связующего использовалось два типа эпоксидного клея с температурой стеклования Tg в диапазоне 62–65 °C и 82 °C соответственно. Противопожарная изоляция была из пяти различных материалов с одинаковой толщиной 20-100 мм и наносилась на нижнюю и боковые грани по всей длине балок. Первоначально балки были нагружены до 37–54 % их теоретической несущей способности, а затем подвергались воздействию огня по стандартной методике ISO 834. Все образцы воспринимали приложенную нагрузку без отказов в течение 2 ч при воздействии высоких температур. Температура соединения превысила температуру стеклования клея Tg, но это не нарушило сцепление системы.
В статье [51] описаны испытания 13 образцов железобетонных плит, 11 из которых были усилены методом затяжки углеволокном с адгезивом (эпоксидным или цементным клеем). Шесть образцов плит были испытаны при комнатной температуре при поэтапном нагружении до разрушения, а семь образцов - при постоянной нагрузке с повышением температуры поверхности вплоть до разрушения. Для этого плиты при комнатной температуре были загружены со скоростью 2 кН/мин до нагрузки 20 кН. После достижения нагрузки 20 кН повышали температуру до 100 или 200 °С.
Испытание показало, что используемый эпоксидный клей обеспечивает лучшую адгезию по сравнению с цементным клеем, используемым при усилении железобетонных изгибаемых элементов полимеркомпозитными материалами методом затяжки. Конструкции, усиленные методом затяжки полимеркомпозитными материалами, могут сопротивляться воздействию высоких температур в течение нескольких часов даже в тех случаях, когда после усиления несущая способность конструкции существенно повышена. Также можно сделать вывод, что эффективность работы системы усиления методом затяжки при высоких температурах можно значительно увеличить, используя цементный клей, обеспечивающий надежное сцепление шва соединения в течении 4 часов.
Рис. 5. Сравнение прогибов в середине пролета железобетонных балок без усиления, усиленных углеволокном методом затяжки и усиленных методом внешнего армирования [49]
Сравнение огнестойкости системы внешнего армирования и метода затяжки. Авторы [47] пришли к выводу, что системы усиления методом затяжки, использующие ламинаты углепластика, обеспечивают безотказную работу усиленной конструкции под воздействием огня. В таких системах огнестойкость конструкций значительно выше. Это вызвано следующими факторами:
- теплоизоляцией углепластика, ввиду частичного погружения системы усиления в бетон;
- улучшенными характеристиками сцепления углепластика и бетона.
Сравнение огнестойкости систем усиления методом внешнего армирования и методом затяжки, приведенное в [45] представлено на рисунке 6: а) средняя температура зоны анкеровки; б) среднее время разрушения конструкции.
Выводы. Несмотря на то, что в этой области зарубежными исследователями было проведено множество испытаний, информация об огнестойкости конструкций, усиленных полимеркомпозитными материалами, ограничена, особенно в реальных условиях пожара и под нагрузкой. На основании приведенной выше информации можно сделать вывод, что, если несущая конструкция запроектирована с запасом по огнестойкости, а увеличение несущей способности конструкции после усиления является небольшим, конструктивный элемент все еще может воспринимать приложенную нагрузку под воздействием высоких температур.
Усиление конструкций методом затяжки обладает большими преимуществами по сравнению с усилением методом внешнего армирования. Кроме того, изоляция огнезащитными материалами системы внешнего армирования может значительно улучшить огнестойкость конструкции, повышая при этом стоимость усиления. Существует также необходимость разработки более простого метода расчета огнестойкости и толщины изоляционного материала для усиливаемой конструкции.
1. Бокарев С.А., Неровных А.А., Смердов Д.Н. Стойкость изгибаемых железобетонных конструкций, усиленных композиционными материалами на основании углеродного волокна, к воздействию отрицательных и положительных температур // Международная научно-практическая конференция, посвященная 80-летию Сибирского государственного университета путей сообщения. Тезисы конференции. Ч. I. Новосибирск. 2012. С. 127-128.
2. Бокарев С.А., Костенко А.Н., Смердов Д.Н., Неровных А.А. Экспериментальные исследования при пониженных и повышенных температурах железобетонных образцов, усиленных полимерными композиционными материалами // Интернет-журнал «Науковедение». 2013. №3 (16). С. 1-9.
3. Бокарев С.А., Смердов Д.Н. Нелинейный анализ железобетонных изгибаемых конструкций, усиленных композитными материалами // Вестник Томского государственного архитектурно-строительного университета. 2010. №2. С. 113-125.
4. Бокарев С.А., Смердов Д.Н., Устинов В.П., Яшнов А.Н. Усиление пролетных строений с использованием композитных материалов // Путь и путевое хозяйство. 2008. №6. С. 30-31.
5. Бокарев С.А., Власов С.М., Неровных А.А., Смердов Д.Н. Коэффициенты надежности для композиционных материалов, применяемых для усиления железобетонных элементов мостовых конструкций // Вестник Томского государственного архитектурно-строительного университета. 2012. №2. С. 222-229.
6. Бокарев С.А., Смердов Д.Н., Неровных А.А. Методика расчета по прочности сечений, эксплуатируемых железобетонных пролетных строений, усиленных композитными материалами // Известия вузов. Строительство. 2010. №2. С. 63−64.
7. Бокарев С.А., Смердов Д.Н., Неровных А.А. Оценка выносливости изгибаемых железобетонных конструкции, усиленных композитными материалами // Дальний Восток. Автомобильные дороги и безопасность движения. Международный сборник научных трудов. Хабаровск. 2010. С. 287-294.
8. Быков А.А., Румянцев С.Д., Бирин А.С. Экспериментальное исследование прочностных и деформационных характеристик железобетонных балок, усиленных углепластиком // Вестник ПНИПУ. 2016. №2(22). С. 112-126.
9. Григорьева Я.Е. Экспериментальное исследование влияния внешнего армирования изгибаемых железобетонных балок углеволокном на прочность и жесткость конструкций // Вестник Московского государственного строительного университета. 2011. №8. С. 181-184.
10. Михуб А., Польской П.П. Опытные значения ширины раскрытия нормальных трещин железобетонных балок, усиленных композитными материалами // Инженерный вестник Дона. 2013. №2 (25). 104 с.
11. Овчинников И.И., Овчинников И.Г., Чесноков Г.В., Михалдыкин Е.С. Анализ экспериментальных исследований по усилению железобетонных конструкций полимерными композитными материалами. Ч.1. Отечественные эксперименты при статическом нагружении [Электронный ресурс] // Интернет-журнал «НАУКОВЕДЕНИЕ». 2016. [Т. 8]. №3. URL: http://naukovedenie.ru/PDF.
12. Овчинников И.И., Овчинников И.Г., Чесноков Г.В., Михалдыкин Е.С. Анализ экспериментальных исследований по усилению железобетонных конструкций полимерными композитными материалами. Ч.2. Влияние температуры [Электронный ресурс] // Интернет-журнал «НАУКОВЕДЕНИЕ». 2016. [Т. 8]. №4. URL: http://naukovedenie.ru/ PDF/01TVN416.pdf.
13. Смердов М.Н., Смердов Д.Н., Клементьев А.О. Экспериментальные исследования прочности и деформативности изгибаемых железобетонных элементов, армированных в сжатой и растянутой зоне неметаллической композиционной арматурой // Транспорт Урала. 2014. №4.С. 49-54.
14. Смердов М.Н., Неволин Д.Г., Клементьев А.О., Смердов Д.Н. Методика расчета изгибаемых бетонных элементов, армированных полимерными композиционными материалами // Транспорт Урала. 2015. №3. С. 98-101.
15. Смердов М.Н., Смердов Д.Н., Селиванова Е.О. К вопросу долговечности изгибаемых железобетонных элементов, усиленных полимерными композиционными материалами // Материалы международной научно-практической конференции «Модернизация и научные исследования в транспортном комплексе». Пермь. 2015. С. 490-493.
16. Смердов М.Н., Смердов Д.Н., Селиванова Е.О. Отечественный опыт экспериментальных исследований долговечности железобетонных элементов, усиленных полимерными композиционными материалами // Инновационный транспорт. 2015. №2. С. 60-63.
17. Смоляго Г.А., Ищук Я.Л., Чередниченко А.П. Усиление изгибаемых железобетонных элементов углеволокном с учетом истории нагружений // Наука и инновации в строительстве: Сборник докладов Международной научно-практической конференции (к 165-летию со дня рождения В.Г. Шухова). Белгород. 2018. С. 120-124.
18. Шилин, А.А., Пшеничный В.А., Картузов Д.В. Внешнее армирование железобетонных конструкций композитными материалами. М.: Стройиздат, 2007. 180 с.
19. Юшин А.В. К расчету наклонных сечений элементов железобетонных конструкций, усиленных композитными материалами // Вестник гражданских инженеров. 2013. №4 (39). С. 83-91.
20. Юшин А.В., Морозов В.И. Анализ НДС двухпролетных железобетонных балок, усиленных композитными материалами по наклонному сечению, с учетом нелинейности [Электронный ресурс] // Современные проблемы науки и образования. 2014. №6. URL: http://www.science-education.ru.
21. Юшин А.В., Морозов В.И. Экспериментальные исследования двухпролетных железобетонных балок, усиленных композитными материалами по наклонному сечению // Вестник гражданских инженеров. 2014. №5 (46). С. 77-84.
22. Польской П.П., Маилян Д.Р. Композитные материалы - как основа эффективности в строительстве и реконструкции зданий и сооружений [Электронный ресурс] // Инженерный вестник Дона. 2012. №4. Ч.2. URL: http://ivdon.ru/magazine/archive/n4p2y2012/1307.
23. Хишмах М., Польской П.П., Михуб А. К вопросу о деформативности балок из тяжелого бетона, армированных стеклопластиковой и комбинированной арматурой // Эл. журнал «Инженерный вестник Дона». 2012. №4. С. 163-166.
24. Польской П.П., Маилян Д.Р., Мерват Х., Кургин К.В. О деформативности изгибаемых элементов из тяжелого бетона при двухрядном расположении углепластиковой и комбинированной арматуры [Электронный ресурс] // Инженерный вестник Дона. 2013. №4. URL: http://ivdon.ru/ru/magazine/archive/n4y2013/2094.
25. Польской П.П., Георгиев С.В. Вопросы исследования сжатых железобетонных элементов, усиленных различными видами композитных материалов [Электронный ресурс] // Инженерный вестник Дона. 2013. №4. URL: http://ivdon.ru/ru/magazine/archive/n4y2013/2134.
26. Маилян Д.Р., Польской П.П. Прочность и деформативность вновь усиленных композитными материалами балок, при различных варьируемых факторах [Электронный ресурс] // Эл. журнал «Инженерный вестник Дона». 2013. №2. URL: http://ivdon@ivdon.ru.
27. Маилян Д.Р., Польской П.П., Георгиев С.В. Методики усиления углепластиком и испытания коротких и гибких стоек // Научное обозрение. 2014. №10. Ч.2. С. 415-418.
28. Клюев С.В. Усиление и восстановление конструкций с использованием композитов на основе углеволокна // Бетон и железобетон. 2012. №3. С. 23-26.
29. Клюев С.В., Гурьянов Ю.В. Внешнее армирование изгибаемых фибробетонных изделий углеволокном // Инженерно-строительный журнал. 2013. №1 (36). С. 21-26.
30. Клюев С.В., Рубанов В.Г., Павленко В.И., Гурьянов Ю.В., Гинзбург А.В. Расчет строительных конструкций усиленных углеволокном // Вестник БГТУ им. В.Г. Шухова. 2013. №5. С. 54-56.
31. Kodur V., Baingo D. Fire resistance of FRP reinforced concrete slabs. National Research Council of Canada. 1998. 758 p.
32. Mallick P.K. Fiber-Reinforced Composites. CRC Press. 2007. 584 p.
33. Sen R., Mariscal D., Shahawy M. Durability of Fiberglass Prestensioned Beams // ACI Structural Journal. 1993. Vol. 90. Pp. 525-533.
34. Gates T. Effects of Elevated Temperature on the Viscoelastic Modeling of Graphite/Polymeric Composites // NASA Technical Memorandum. 1991. Pp. 104-160.
35. Chowdhury E., Eedson R., Bisby L., Green M., Benichou N. Mechanical Characterization of Fibre Reinforced Polymers Materials at High Temperature // Fire Technol. 2011. Vol. 47. Pp. 1055-1063.
36. Bisby L., Green M. Fire Performance of FRP Systems for Infrastructure. A State-of-the-Art Report NRC Publications Archive. 2005. 59 p. doihttps://doi.org/10.4224/20377587.
37. Mallick P.K. Fibre-Reinforced Composites: Materials, Manufacturing, and Design. Marcel Dekker Inc. New York. 1988.
38. Katz A. Bond mechanism of FRP rebars to concrete // Materials and Structures. 1999. Vol. 32. Pp. 761-768.
39. Kodur V., Baingo D. Fire resistance of FRP reinforced concrete slabs. National Research Council of Canada. 1998. 758 p.
40. Fib bulletin 14 Externally bonded FRP reinforcement for RC structures. Technical report. 2000.
41. Foster S., Bisby L. Fire Survivability of Externally Bonded FRP Strengthening Systems // J. Compos. Constr. 2008. Vol. 12. Pp. 553-561.
42. Barnes R., Fidell J. Performance in Fire of Small-Scale CFRP Strengthened Concrete Beams // J. Compos. Constr. 2006. Vol. 10. Pp. 503-508.
43. Williams B., Kodur V., Green M., Bisby L. Fire Endurance of Fiber-Reinforced Polymer Strengthened Concrete TBeams // ACI Structural Journal. 2008. Vol. 105. Pp. 60-67.
44. Adelzadeh M., Green M., Benichou N. Behaviour of fibre reinforced polymer-strengthened T-beams and slabs in fire // Struct. Build. 2012. Vol. 165. Pp. 361-371.
45. Firmo J., Correia R., Bisby L. Fire behaviour of FRP strengthened reinforced concrete structural elements // A state-of-the-art review Composites Part B. 2015. Vol. 80. Pp. 198-216.
46. Ahmed A., Kodur V. The experimental behavior of FRP-strengthened RC beams subjected to design fire exposure // Eng. Struct. 2011. Vol. 33. Pp. 2201-2211.
47. Firmo J., Correia R., França P. Fire behaviour of reinforced concrete beams strengthened with CFRP laminates // Protection systems with insulation of the anchorage zones Composites Part B: Engineering. 2012. Vol. 43. Pp. 1545-1556.
48. Barros J., Fortes A. Flexural strengthening of concrete beams with CFRP laminates bonded into slits // Cement Concr Compos. 2006. Vol. 27. Pp. 471-480.
49. Yu B., Kodur V. Fire behavior of concrete T-beams strengthened with near-surface mounted FRP reinforcement // Eng. Struct. 2014. Vol. 80. Pp. 350-361.
50. Palmieri A., Matthys S., Taerwe L. Experimental investigation on fire endurance of insulated concrete beams strengthened with near surface mounted FRP bar reinforcement // Compos. Part B. 2012. Vol. 43. Pp. 885-895.
51. Burke P. Low and high temperature performance of near surface mounted FRP strengthened concrete slabs: the degree of Master of Science (Engineering). Queen’s Univ., Kinston, ON, Canada, 2008. 193 p.