МОДИФИЦИРОВАНИЕ ГАЗОТЕРМИЧЕСКИХ ПОКРЫТИЙ ВОЗДЕЙСТВИЕМ ИЗЛУЧЕНИЯ СО2-ЛАЗЕРА
Аннотация и ключевые слова
Аннотация (русский):
Представлены результаты исследований по установлению зависимости пористости газотермических покрытий от параметров лазерного излучения. На первом этапе решения задачи на основании аналитических зависимостей описано воздействие лазерного излучения на поверхностные слои газотермического покрытия. При этом учитывается его несплошность, вызванная наличием открытых и закрытых пор. Показано, что для уменьшения пористости покрытия под воздействием лазерного излучения необходимо создавать на поверхности покрытия температуру в интервале «температура плавления — температура кипения». Вызванное повышением интенсивности излучения увеличение температуры выше указанного диапазона приводит к испарению поверхностных слоёв покрытия вплоть до его полного удаления в зоне термического воздействия. На втором этапе проводились экспериментальные исследования: предварительно напылённые газотермические покрытия двух типов обрабатывались лазером. Исследовались покрытия на основе металлических (ПН 85-Ю-15) и неметаллических (Al2O3) компонентов. Изменения пористости оценивались количественно с помощью разработанной в среде Visual Studio 2008 программы обработки изображений, путём попиксельного сравнения микроструктуры площадей, занимаемых порами и материалом покрытия. Установлено, что воздействие лазерным излучением приводит к снижению средней пористости газотермических покрытий. Пористость покрытия на основе сплава ПН 85-Ю-15 снижается с 17 % в исходном состоянии до 5–8 % после лазерной обработки. Соответствующие показатели для керамического покрытия Al2O3 — 24,5 % и 15–18 %.

Ключевые слова:
лазерное излучение, газотермическое покрытие, пористость газотермического покрытия.
Текст

Введение. Одним из перспективных способов получения защитных и износостойких покрытий повышенной прочности является плазменный метод их нанесения [1, 2]. Эффективность применения функциональных газотермических покрытий определяется не только свойствами напыляемого материала, но и характеристиками покрытия. Например, теплозащитная способность и коррозионная стойкость покрытия во многом определяются его пористостью. С увеличением пористости улучшаются теплозащитные свойства покрытия, в частности термостойкость, сопротивляемость растрескиванию при термоциклических нагрузках. С другой стороны, развитая наружная и внутренняя пористость облегчает возможность проникновения атмосферных газов или агрессивных сред через покрытие к поверхности металлической основы, что приводит к образованию на границе раздела оксидных плёнок, снижению прочности адгезионного сцепления и отслаиванию покрытия [3]. Оплавив некоторый объём частиц в составе покрытия, можно снизить его пористость. Одним из путей эффективного повышения эксплуатационных характеристик поверхностных слоёв конструкционных материалов является применение комбинированных методов обработки — с сочетанием различных физико-химических процессов [4]. Дисперсные напылённые покрытия достаточно оплавлять. При этом следует исключить объёмный нагрев до температуры плавления покрытий, чтобы избежать их отслаивания вследствие подплавления подложки и значительной её термодеформации. Известно, что воздействие концентрированными потоками энергии, в частности лазерным излучением, обеспечивает высокотемпературный нагрев, отличающийся малой зоной термического влияния [5].

Список литературы

1. Кудинов, В. В. Плазменные покрытия / В. В. Кудинов. - Москва : Наука, 1977. - 184 с.

2. Рыжкин, А. А. Фазовый состав металломатричных композитов системы «Fe-W-C», фор-мируемых плазменным осаждением / А. А. Рыжкин, А. В. Илясов / Вестн. Дон. гос. техн. ун-та. - 2007. - Т. 7, № 2 (33). - С. 169-176.

3. Пузряков, А. Ф. Теоретические основы технологии плазменного напыления : учеб. по-собие по курсу «Технология конструкций из металлокомпозитов» / А. Ф. Пузряков. - Москва : Изд-во Моск. гос. техн. ун-та им. Н. Э. Баумана, 2003. - 360 с.

4. Смоленцев, Е. В. Классификация комбинированных методов обработки / Е. В. Смолен-цев // Вестн. Дон. гос. техн. ун-та. - 2010. - Т. 10, № 1 (44). - С. 76-79.

5. Григорьянц, А. Г. Технологические процессы лазерной обработки : учеб. пособие для вузов / А. Г. Григорьянц, И. Н. Шиганов, А. И. Мисюров ; под ред. А. Г. Григорьянца. - Москва : Изд-во Моск. гос. техн. ун-та им. Н. Э. Баумана, 2006. - 664 с.

6. Балашова, С. А. Обработка газотермических покрытий с использованием лазерного излучения / С. А. Балашова, А. А. Митрофанов, Е. А. Чащин // Вестн. Иван. гос. энергет. ун-та. - 2011. - № 1. - С. 103-105.

7. Митрофанов, А. А. Обработка газотермических покрытий непрерывным излучением СО2-лазера / А. А. Митрофанов, Е. А. Чащин // Вестн. машиностроения. - 2013. - № 4. - С. 25-27.

8. Mitrofanov, A. A. Laser treatment of plasma coating / A. A. Mitrofanov, E. A. Chaschin, S. A. Balashova // Youth school-workshop “Modern laser physics and laser information technologies for science and manufacture” : 1st international Russian-Chinese conference. - Vladimir, 2011. - Pp. 86-88.

9. Повышение эксплуатационных характеристик керамических покрытий / С. А. Балашова [и др.] // Вестн. Сарат. гос. техн. ун-та. - 2009. - Вып. 1, № 2 (38). - С. 72-79.

10. Криштал, М. А. Структура и свойства сплавов, обработанных излучением лазера / М. А. Криштал, А. А. Жуков, А. Н. Кокора. - Москва : Металлургия, 1973. - 192 с.

11. Пористые проницаемые материалы : справ. / под ред. С. В. Белова. - Москва : Метал-лургия, 1987. - 335 с.

Войти или Создать
* Забыли пароль?