INVESTIGATING AZIMUTHAL PROPAGATION OF PC5 GEOMAGNETIC PULSATIONS AND THEIR EQUIVALENT CURRENT VORTICES FROM GROUND-BASED AND SATELLITE DATA
Аннотация и ключевые слова
Аннотация (русский):
Using phase delays at spaced stations and satellite observations in the magnetosphere during two events, we have studied azimuthal propagation of resonant bursts of geomagnetic pulsations in the Pc5 range. We have also examined propagation of equivalent current vortices during these events. It has been found that the pulsations, observed in the magnetosphere and ionosphere, and the equivalent current vortices in the ionosphere propagate in the azimuthal direction from the dayside to the nightside. Propagation velocities according to ground-based observations are 5–25 km/s; according to satellite observations, 114–236 km/s. Propagation velocities according to satellite observations do not exceed the Alfvén velocity in the magnetosphere, which is 620–1006 km/s. According to data from various instruments, there are signatures of fast magnetosonic and Alfvén waves at a time in one of the events on the satellite. This clearly reflects the transformation of these waves. The geomagnetic latitude of registration of vortex centers coincides with the latitude of the maximum amplitude of geomagnetic pulsations (field line resonances) and decreases by ~15° toward the early hours of MLT. The observed dynamics of Pc5 pulsations and vortices is assumed to reflect MHD wave propagation in the magnetosphere.

Ключевые слова:
geomagnetic Pc5 pulsations, equivalent current vortices, azimuthal propagation, wave disturbances in plasma parameters and geomagnetic field in Pc5 pulsations in the magnetosphere
Список литературы

1. Alken P., Thébault E., Beggan C.D., Amit H., Aubert Baerenzung, J. Bondar T.N., et al. International Geomagnetic Reference Field: the thirteenth generation. Earth Planets Space. 2021, vol. 73, no. 49. DOI:https://doi.org/10.1186/s40623-020-01288-x.

2. Allan W., White S.P., Poulter E.M. Impulse-excited hydromagnetic cavity and field-line resonances in the magnetosphere. Planet. Space Sci. 1986, vol. 34, pp. 371‒385. DOI:https://doi.org/10.1016/0032-0633(86)90144-3.

3. Amm O., Engebretson M.J., Hughes T., Newitt L., Viljanen A., Watermann J. A Traveling convection vortex event study: Instantaneous ionospheric equivalent currents estimation of field-aligned currents and the role of induced currents. J. Geophys. Res. 2002, vol. 107, no. A11, p. 1334. DOI:https://doi.org/10.1029/2002JA009472.

4. Chelpanov M.A., Anfinogentov S.A., Kostarev D.V., Mikhailova O.S., Rubtsov A.V., Fedenev V.V., Chelpanov A.A. Review and comparison of MHD wave characteristics at the Sun and in Earth’s magnetosphere. Solar-Terr. Phys. 2022, vol. 8, iss. 4, pp. 3–27. DOI:https://doi.org/10.12737/stp-84202201.

5. Chen L., Hasegawa A. A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance. J. Geophys. Res. 1974, vol. 79, no. 7, pp. 1024‒1032. DOI: 10.1029/ JA079i007p01024.

6. Chinkin V.E., Soloviev A.A., Pilipenko V.A. Identification of Vortex Currents in the Ionosphere and Estimation of Their Parameters Based on Ground Magnetic Data. Geomagnetism and Aeronomy. 2020, vol. 60, no. 5. pp. 559‒569. DOI:https://doi.org/10.1134/S0016793220050035.

7. Dmitriev A.V., Suvorova A.V. Atmospheric Effects of Magnetosheath. Jets. Atmosphere. 2023, vol. 14, iss. 1, p. 45. DOI:https://doi.org/10.3390/atmos14010045.

8. Friis-Christensen E.S., McHenry M.A., Clauer C.R., Vennerstrøm S. Ionospheric traveling convection vortices observed near the polar cleft-A triggered response to sudden changes in the solar wind. Geophys. Res. Lett. 1988, vol. 15, iss.3, pp. 253–256. DOI:https://doi.org/10.1029/GL015i003p00253.

9. Gjerloev J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012, vol. 117, no. A09213. DOI: 10.1029/ 2012JA017683.

10. Glassmeier K.-H. Traveling magnetospheric convection twin-vortices: Observations and theory. Ann. Geophys. 1992, vol. 10, p. 547.

11. Glassmeier K.-H., Othmer C., Gramm R., Stellmacher M., Engebretson M. Magnetospheric field-line resonances: A comparative planetology approach. Earth Environment Sci. 1999, vol. 20, pp. 61–109.

12. Hemming R.V. Digital filters. M.: Sov.radio. 1980, 224 p. (In Russian).

13. Kakad A.P., Lakhina G.S., Singh S.V. A shear flow instability in plasma sheet region. Planet Space Sci. 2003, vol. 51, p. 177.

14. Klibanova Y.Y., Mishin V.V., Tsegmeda B., Moiseev A.V. Properties of daytime long-period pulsations during magnetospheric storm commencement. Geomagnetism and Aeronomy. 2016, vol. 56, no. 4, pp. 426–440. DOI:https://doi.org/10.1134/S0016793 216040071.

15. Korotova G.I., Sibeck D.G., Singer H.J., Rosenberg T.J., Engebretson M.J. Interplanetary magnetic field control of dayside transient event occurrence and motion in the ionosphere and magnetosphere. Ann. Geophys. 2004, vol. 22, pp. 4197–4202.

16. Korotova G., Sibeck D., Engebretson M., Balikhin M., Thaller S., Kletzing C. Spence H., Redmon R. Multipoint observations of compressional Pc 5 pulsations in the dayside magnetosphere and corresponding particle signatures. Ann. Geophys. 2020, vol. 38, pp. 1267–1281. DOI:https://doi.org/10.5194/angeo-38-1267-2020.

17. Lühr H.M., Lockwood P.E., Sandholt T.L., Hansen T. Multi-instrument ground-based observations of a travelling convection vortices event. Ann. Geophys. 1996, vol. 14, no. 2, pp. 162–181.

18. Maffei S., Eggington J.W.B., Livermore P.W., Mound J.E., Sanchez S., Eastwood J.P., Freeman M.P. Climatological predictions of the auroral zone locations driven by moderate and severe space weather events. Scientific Rep. 2023, vol. 13, p. 779. DOI:https://doi.org/10.1038/s41598-022-25704-2.

19. Makarov G.A., Solovyev S.I., Engebretson M., Yumoto K. Azimuth propogation of geomagnetic sudden pulse in high latitudes at the December 15, 1995 sharp decrease in a solar wind density. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2002, vol. 42, no.1, pp. 42–50. (In Russian).

20. Mann I.R., Voronkov I., Dunlop M., Donovan E., Yeoman T.K., Milling D.K., Wild J., Kauristie K., Amm O., Bale S.D., Balogh A., Viljanen A., Opgenoorth H.J. Coordinated ground-based and Cluster observations of large amplitude global magnetospheric oscillations during a fast solar wind speed interval. Ann. Geophys. 2002, vol. 20, pp. 405‒426. DOI:https://doi.org/10.5194/angeo-20-405-2002.

21. Mazur V.A., Leonovich A.S. ULF hydromagnetic oscillations with the discrete spectrum as eigenmodels of MHD-resonator in the near-Eath part of the plasma sheet. Ann. Geophys. 2006, vol. 24, no. 6, pp. 1639–1648.

22. Mishin V.V., Matiukhin Iu.G. Kelvin-Helmholtz instability in the magnetopause as a possible sourceof wave energy in the earth's magnetosphere. Geomagnetizm i Aeronomiia. 1986, vol. 26, pp. 952–957. (In Russian).

23. Motoba T., Kikuchi T., Lühr H., Tachihara H., Kitamura T.I., Hayash K. Global Pc 5 caused by a DP2-type ionospheric current system. J. Geophys. Res. 2002, vol. 107, pp. 1032–1047. DOI:https://doi.org/10.1029/2001JA900156.

24. Oliveira D.M., Hartinger M.D., Xu Z., Zesta E., Pilipenko V.A., Giles B.L., Silveira M.V.D. Interplanetary shock impact angles control magnetospheric ULF wave activity: Wave amplitude, frequency, and power spectra. Geophys. Res. Lett. 2020, vol. 47, pp. 1–11. DOI:https://doi.org/10.1029/2020GL090857.

25. Saito T. Geomagnetic pulsations. Space Sci. Rev. 1969, vol. 10, iss. 3, pp. 319–412.

26. Saito T. Long-period irregular magnetic pulsation Pi3. Space Sci. Rev. 1978, vol. 21, pp. 427–467. DOI:https://doi.org/10.1007/BF00173068.

27. Southwood D.J. Some features of field line resonances in the magnetosphere. Planet. Space Sci. 1974, vol. 22, pp. 483‒491.

28. Tsyganenko N.A., Sitnov M.I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res. 2005, vol. 110, A03208. DOI:https://doi.org/10.1029/2004 JA010798.

29. Vanhamäki H., Juusola L. Introduction to Spherical Elementary Current Systems. Ionospheric Multi-Spacecraft Analysis Tools. 2020, vol. 17, pp. 5–33. DOI:https://doi.org/10.1007/978-3-030-26732-2_13.

30. Wright A.N. Dispersion and wave coupling in inhomogeneous MHD waveguides. J. Geophys. Res. 1994, vol. 99, pp. 159‒167. DOI:https://doi.org/10.1029/93JA02206.

31. Yahnin A., Moretto T. Travelling convection vortices in the ionosphere map to the central plasma sheet. Ann. Geophys. 1996, vol. 14, pp. 1025–1031. DOI:https://doi.org/10.1007/s00585-996-1025-3.

32. Zhang W., Nishimura Y., Wang B., Hwang K.-J., Hartinger M. D., Donovan E. F. Identifying the structure and propagation of dawnside Pc5 ULF waves using space-ground conjunctions. J. Geophys. Res.: Space Phys. 2022, vol. 127, no. 12, p. e2022JA030473. DOI: 10.1029 2022JA030473.

33. Zesta E., Hughes W.J., Engebretson M.J. A statistical study of traveling convection vortices using the Magnetometer Array for Cusp and Cleft Studies. J. Geophys. Res. 2002, vol. 107, pp. 18.1‒18.21. DOI:https://doi.org/10.1029/1999JA000386.

34. URL: http://supermag.jhuapl.edu/mag (accessed March 22, 2024).

35. URL: http://cdaweb.gsfc.nasa.gov (accessed March 22, 2024).

36. URL: https://link.springer.com/chapter/10.1007/978-3-030-26732-2_2#Sec18 (accessed March 22, 2024).

37. URL: https://www.mathworks.com/help/signal/ref/findpeaks.html (accessed March 22, 2024).

Войти или Создать
* Забыли пароль?