REGULAR CONVEX POLYHEDRA FROM THE STANDPOINT OF ANALYTICAL AND PROJECTIVE GEOMETRY
Abstract and keywords
Abstract (English):
The research is devoted to the Platonic geometric solids, which are studied in the discipline 
of descriptive geometry. In this case, the reference literature usually considers the geometric shapes of the surfaces of these bodies with an indication of the number of faces and edges, as well as their visual representation. The presented research considers the possibility of using analytical and computational geometry, taking into account the duality principle of projective geometry, to model and visualize the surfaces of Platonic solids (tetrahedron, hexahedron, octahedron, dodecahedron, icosahedron) in the mathematical programming package Maple. The developed modeling algorithms are useful for students studying disciplines in descriptive, affine, projective and computational geometry when developing algorithms for modeling and visualizing geometric objects.

Keywords:
Plato's geometric solids, system of three projection planes, duality principle 
of projective geometry, implementation of modeling in the mathematical package Maple
Text
Text (PDF): Read Download
References

1. Boykov A.A., Egiazaryan K.T., Efremov A.V., Kadykova N.S. Problemy geometro-graficheskoy podgotovki studentov vuzov // Geometriya i grafika. 2023. T.11, № 1. 
S. 4-22. DOI:https://doi.org/10.1273/2308-4898-2023-11-1-4-22. DOI: https://doi.org/10.12737/2308-4898-2023-11-1-4-22; EDN: https://elibrary.ru/DQRRMT

2. Boykov A.A., Efremov A.V., Rustamyan K.T. O studencheskoy nauchno-issledovatel'skoy rabote na geometro-graficheskih kafedrah // Geometriya i grafika. 2023. №. 4. S. 61-75. DOI:https://doi.org/10.12737/2308-4898-2024-11-4-61-75. EDN: https://elibrary.ru/ALMTNH

3. Bronshteyn I.N. Spravochnik po matematike / I.N. Bronshteyn, K.A. Semendyaev. – M.: Nauka, 1967. – 608 s.

4. Vennindzher, M. Modeli mnogogrannikov. Per. s angl. V. V. Firsova. Pod red. i 
s poslesl. I.M. Yagloma., M.: «Mir», 1974. 236 s.

5. Vyshnepol'skiy V.I., Boykov A.A., Egiazaryan K.T., Efremov A.V. Nauchno-issledovatel'skaya rabota na kafedre «Inzhenernaya grafika» RTU MIREA // Geometriya i grafika. 2023. № 1. S. 70-85. DOI:https://doi.org/10.1273/2308-4898-2023-11-1-70-85. DOI: https://doi.org/10.12737/2308-4898-2023-11-1-70-85; EDN: https://elibrary.ru/TGIBWG

6. Vyshnepol'skiy V.I., Boykov A.A., Egiazaryan K.T., Kadykova N.S. Metodicheskaya sistema provedeniya zanyatiy na kafedre «Inzhenernaya grafika» RTU MIREA // Geometriya i grafika. 2023. № 1. S. 23-34. DOI:https://doi.org/10.1273/2308-4898-2023-11-1-23-34. DOI: https://doi.org/10.12737/2308-4898-2023-11-1-23-34; EDN: https://elibrary.ru/BCSTZQ

7. Vyshnepol'skiy V.I., Boykov A.A., Efremov A.V., Kadykova N.S. Organizaciya praktiko-orientirovannogo obucheniya na kafedre «Inzhenernaya grafika» RTU MIREA // Geometriya i grafika. 2023. T. 11, № 1. S. 35-43. DOI:https://doi.org/10.1273/2308-4898-2023-11-1-35-43. DOI: https://doi.org/10.12737/2308-4898-2023-11-1-35-43; EDN: https://elibrary.ru/RYLEYE

8. Gil'bert D. Naglyadnaya geometriya / D. Gil'bert, S. Kon-Fossen; Per.s nem. – M.: Nauka, 1981. – 344 s.

9. Grafskiy O.A., Lanec S.A., Ponomarchuk Yu.V., Faleeva E.V., Chasovnikov D.R. Tela Platona: issledovanie modelirovaniya i vizualizaciya v Maple. Estestvennye i tehnicheskie nauki. M.: Sputnik+. №1(200), 2025. – S. 36-40. EDN: https://elibrary.ru/HFDYYR

10. Grafskiy O.A. Osnovy tverdotel'nogo modelirovaniya: ucheb. posobie / O.A. Grafskiy, 
E.V. Komyalova, V.A. Yazykov – Habarovsk: izd-vo DVGUPS, 2009. – 72 s.

11. Ivanov G.S. Teoreticheskie osnovy nachertatel'noy geometrii: uchebnoe posobie / 
G.S. Ivanov. – M.: Mashinostroenie, 1998. – 157 s.

12. Korn G. Spravochnik po matematike / G. Korn, T. Korn. – M.: Nauka, 1977. – 832 s.

13. Nazarova Zh.A. Geometro-graficheskaya podgotovka studentov tehnicheskih special'nostey v sovremennyh usloviyah / Zh.A. Nazarova // Geometriya i grafika. 2024. T.12. №. 1. S. 41-49. DOI:https://doi.org/10.12737/2308-4898-2024-12-1-41-49. EDN: https://elibrary.ru/EULJRU

14. Sal'kov N.A. Izuchenie geometrii kak vazhneyshiy sposob razvitiya evristicheskogo myshleniya // Geometriya i grafika. 2024. T. 12. № 1. S 22–31. DOI:https://doi.org/10.12737/2308-3898-2024-12-1-22-31. DOI: https://doi.org/10.12737/2308-4898-2024-12-1-22-31; EDN: https://elibrary.ru/RDLBIM

15. Fedoseeva M.A. Metodika podgotovki studentov tehnicheskih vuzov graficheskim disciplinam // Geometriya i grafika. 2019. T. 7. №. 1. S. 68–73. DOI:https://doi.org/10.12737/article_5c91f. DOI: https://doi.org/10.12737/article_5c91fed8650bb7.79232969; EDN: https://elibrary.ru/ZBHCNN

Login or Create
* Forgot password?