COMPOSITE MATERIAL WITH HIGH ADSORPTION-CATALYTIC ACTIVITY BASED ON BIOCHAR FROM SAWDUST OF BIRCH (BETULA PENDULA)
Abstract and keywords
Abstract (English):
Currently, a pressing issue is the search for new methods of wastewater treatment based on cheap environmentally friendly materials. Composite materials based on a biocoal matrix with nanosized modifiers make it possible to solve problems of increasing the efficiency of pollutant adsorption and photocatalytic purification of aquatic environments. Nanosized cobalt ferrite with a CoFe2O4 spinel structure and a biocoal-based composite with cobalt ferrite nanoparticles CoFe2O4@C were synthesized by the citrate combustion method. Carbon for the composite was obtained by carbonization of birch sawdust at a temperature of 600 ⁰C. The formation of nanosized CoFe2O4 spinel crystallites in all samples was confirmed by X-ray diffractometry. The average size of nanoparticles decreases from 31 ± 4 nm for pure cobalt ferrite to 17 ± 2 nm for a biocoal-based composite. The formation of the cobalt spinel phase and the presence of a large number of surface functional groups (–OH, –C=O, –C=C, –CH3) in the composite were confirmed by IR spectroscopy. The adsorption and catalytic activity of CoFe2O4 and CoFe2O4@C in relation to the purification of aqueous solutions from 2,4-dinitrophenol (DNP) was analyzed. High efficiency of DNP purification by nanosized cobalt ferrite (99.95%) and biochar-based composite (96.84%) was established due to sorption on porous materials and photocatalytic degradation of the toxicant under UV irradiation. The results of the study confirm that biochar-based composites from wood processing waste are promising sorbents/catalysts for the purification of wastewater from paper, pharmaceutical and textile industries from organic pollutants. Due to the magnetic sensitivity of the composite due to CoFe2O4 nanoparticles, the extraction of the sorbent/catalyst by an external magnetic field is significantly simplified for subsequent regeneration and reuse.

Keywords:
pyrolysis, biochar, cobalt ferrite, composite, sorption, photocatalysis
Text
Text (RU) (PDF): Read Download
References

1. Fito J., Van Hulle S.W.H. Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability.Environment, Development and Sustainability. 2021; 23: 2949–2972. DOI: https://doi.org/10.1007/s10668-020-00732-y.

2. Du Plessis A. Persistent degradation: global water quality challenges and required actions. One Earth. 2022; 5: 129–131. DOI: https://doi.org/10.1016/j. oneear.2022.01.005.

3. Rong W., Zhipeng T., Chenyang Z., Wei S., Zhuo C., Xin W., Mengqi L. Research progress on heavy metal wastewater treatment in the integrated circuit industry: From pollution control to resource utilization. Separation and Purification Technology. 2025; 376(2): 134033. DOI: https://doi.org/10.1016/j.seppur.2025.134033.

4. Ruzgar A., Karatas Y., Yurderi M., Sener L., Gulcan M., ZahmakiranM.Synthesis, characterization, and determination of the catalytic roles of tungsten (VI) oxide-supported Pd (0) nanoparticles in the reduction of nitroaromatic pollutants. Materials Chemistry and Physics. 2025; 346: 131368. DOI: https://doi.org/10.1016/j.matchemphys.2025.131368.

5. Gautam N., Deka D., Das G. Efficient adsorption of nitroaromatic compounds from reusable hierarchical porous biochar emanates from the Ananascomosus crown and Citrus limetta fibers. Chemical Engineering Science. 2025; 308: 121408. DOI: https://doi.org/10.1016/j.ces.2025.121408.

6. Sangamithirai D., Gopi Krishna K.R., Pandurangan A. Investigating the synergistic effect of RuO2 nanoparticle-decorated V2O5nanoflakes for sensitive detection of 2,4-dinitrophenol and 2,4-dinitrotoluene. Journal of Electroanalytical Chemistry. 2024; 970: 118554. DOI: https://doi.org/10.1016/j.jelechem.2024.118554.

7. Meira A.C.R., Mezalira D.Z., Tondo D.W., Bail A., Arizaga G.G.C., Domingos J.B., Giona R.M. Efficient and versatile catalyst for nitrobenzene compounds reduction based on magnetite coated with semi-metallic bismuth. Applied Surface Science. 2025; 684: 161866. DOI: https://doi.org/10.1016/j.apsusc.2024.161866.

8. Fito J., Kefeni K.K., Nkambule T.I. The potential of biocah-photocatalytic nanocomposites for removal of organic micropollutions from wastewater. Science of The Total Environment. 2022; 829: 154648. DOI: https://doi.org/10.1016/j.scitotenv.2022.154648.

9. Soifi A., Hajjaoui H., Elmoubarki R., Abdennouri M. Spinel ferrites nanoparticles: Synthesis methods and application in heterogeneous Fenton oxidation of organic pollutants. Applied Surface Science Advances. 2021; 6: 100145. DOI: https://doi.org/10.1016/j.apsadv.2021.100145.

10. Tomina E.V., Khodosova N.A., Sinel'nikov A.A., Zhabin A.V., Kurkin N.A., Novikova L.A. Vliyaniemetodaformirovaniyakompozitananorazmernyi CoFe2O4/nontronitna ego strukturuisvoistva. [The effect of the method of forming a nanosized CoFe2O4/nontronite composite on its structure and properties]. Rossiyskiyzhurnal«Kondensirovannyesredyimezhfaznyegranitsy» = Russian Journal of Condensed Matter and Interphase Boundaries». 2022; 24 (3): 379–386. (In Russ.). DOI: https://doi.org/10.17308/kcmf.2022.24/9861.

11. Jarariya R., Suresh K. Spinel ferrite nanomaterials - MgFe2O4 - Synthesis by appropriate microwave solution combustion (Msc) method of visible light–responsive photocatalyst for Rb21 dye degradation.Materials Today: Proceedings. 2022; 34: 104576. DOI: https://doi.org/10.1016/j.matpr.2022.07.393.

12. Gerbaldo M.V., Peralta M.F., Marchetti S.G., Mendoza S.M., Elias V.R., Crivello M.E., Mendieta S.N. Innovative spinel ferrites for efficient photocatalytic mineralization of carbamazepine in wastewater. Applied Surface Science. 2025; 698: 163132. DOI: https://doi.org/10.1016/j.apsusc.2025.163132.

13. Sharma A., Basant Lal B., Somvanshi A., Suman, Alsayari A., Wahab Sh., Lakshmaiya N., Ravi K., Jasrotia R.Advanced functional spinel ferrite based nanomaterials for targeted wastewater treatment. Journal of Molecular Structure. 2025; 1351(2): 144284. DOI:https://doi.org/10.1016/j.molstruc.2025.144284.

14. Tomina E.V., Doroshenko A.V., Novikova L.A., Tyupina E.A., Kamzin A.S., Zhuzhukin K.V.,Kopylov A.V.Synthesis, characterization, catalytic activity and adsorption properties of new nanosized cobalt-magnesium spinel ferrites for water treatment processes. Molecular Catalysis. 2025; 582: 115178. DOI: https://doi.org/10.1016/j.mcat.2025.115178.

15. Xia L., Li X., Wei Z., Liu A., Chen J., Shang J. Biochar-mediated electron transfer in a spinel ferrite catalyst boosts peracetic acid activation for water decontamination. Chemical Engineering Journal. 2025; 525: 170068. DOI: https://doi.org/10.1016/j.cej.2025.170068.

16. Elaadssi Y., Madigou V., Arab M. Cobalt ferrites CoxFe3-xO4 (x = 1 and x = 1.5) as photocatalysts under simulated sunlight: An experimental study coupled to predictive RSM approach. Surfaces and Interfaces. 2025; 68: 106655. DOI: https://doi.org/10.1016/j.surfin.2025.106655.

17. Hamad H.A., Adel M., Emara M.M., Elsenety M., Mohamed I., Bedir A.G., Gargar Z., Abouelela M.M., Eldeeb N.A., Ibrahim I., Hassan A.A., Abboubi M.E., Amin K.M. Ferrites/carbon allotropes nanocomposites for photocatalytic applications: A review. Coordination Chemistry Reviewsl. 2025; 534: 216537. DOI: https://doi.org/10.1016/j.ccr.2025.216537.

18. Mao X., Liu Y., Long Sh. Research progress on adsorption mechanisms and regeneration applications of modified biochar for heavy metals in wastewater. Desalination and Water Treatment. 2025; 324: 101399. DOI: https://doi.org/10.1016/j.dwt.2025.101399.

19. Jiang Y., Gao L., Dai J., Xie D., Li C., Xiong H., Zhang J., Xu Q., Wang J., Tan Y. Enhanced thermal stability and moisture toleration for toluene catalytic decomposition over MnCoOx supported hierarchical porous biochars with CeO2 encapsulation. Journal of Environmental Chemical Engineering. 2025; 13 (2): 115493. DOI:https://doi.org/10.1016/j.jece.2025.115493.

20. Lu X., Xinlan L., Zhuojun W., Ang L., Jianqiu C., Jingge S. Biochar-mediated electron transfer in a spinel ferrite catalyst boosts peracetic acid activation for water decontamination. Chemical Engineering Journal. 2025; 525: 170068. DOI: https://doi.org/10.1016/j.cej.2025.170068.

21. Nguyen T.H., Nguyen X.H., Do T.G., Nguyen L.H. Development of biochar supported NiFe2O4 composite for peroxydisulfate (PDS) activation to effectively removemoxifloxacin from wastewater. Chemical Engineering Journal Advances. 2023; 16: 1005050. DOI: https://doi.org/10.1016/j.ceja.2023.100550.

22. Dong X., Chu Y., Tong Z., Sun M., Meng D., Yi X., Gao T., Wang M., Duan J. Mechanisms od adsorption and functionalization of biochar for pesticides: A review. Ecotoxicology and Environmental Safety. 2024; 272: 116019. DOI: https://doi.org/10.1016/j.ecoenv.2024.116019.

23. Ting Y., Zhao W., HaiTao L., Kai Z., JunTao L.,HanMeng L., YanYun L., LiPing A., JuaLin W., Yujie S., Zheng Y., YueXing Z., Huijan W., XueLi C., YongLin C. MFe2O4/biochar composites in persulfate-advanced pxidation process for antibiotic treatment: A mini review. Journal of Water Process Engineering. 2024; 68: 106535. DOI: https://doi.org/10.1016/j.jwpe.2024.106535.

24. Mehta D., Pragnesh N.D., Kumar V.V. Toxic crystal violet removal by novel, eco-friendly seablite biochar-ferrite composite: adsorption isotherm, kinetics, and artificial neural network. RSC Advances. 2025; 15 (40): 33189-33208. DOI: https://doi.org/10.1039/d5ra04604a.

25. Bai M., Chai Y., Anwei Chen A., Yuan J. Enhancing cadmium removal efficiency through spinel ferrites modified biochar derived from agricultural waste straw. Journal of Environmental Chemical Engineering. 2022; 11 (1): 109027. DOI: https://doi.org/10.1016/j.jece.2022.109027.

26. Dong C.D., Chen C.W., Hung C.M. Persulfate activation with rice husk-based magnetic biochar for degrading PAEs in marine sediments. Environ SciPollut Res. 2019; 26: 33781–33790. DOI: https://doi.org/10.1007/s11356-018-2423-2.

27. Chandra S., Jagdale P., Medha I., Tiwari A.K., Bartoli M., De Nino A., Olivito F. Biochar-Supported TiO2-Based Nanocomposites for the Photocatalytic Degradation of Sulfamethoxazole in Water – A Review. Toxics. 2021; 9 (11): 313. DOI: https://doi.org/10.3390/toxics9110313.

28. Katika R.M., BodduS. Advanced photocatalysis with biochar-TiO2 composite for efficient oxidation of Congo red dye. Environ Monit Assess. 2025; 197: 831. DOI: https://doi.org/10.1007/s10661-025-14290-1.

29. Abdu M., Tibebu S., Babaee S., Worku A., Msagati T. A.M., Nure J.F. Optimization of photocatalytic degradation of Eriochrome Black Y from aqueous solution using TiO2-biochar composite. Results of Engineering. 2025; 25: 104036. DOI: https://doi.org/10.1016/j.rineng.2025.104036.

30. Du Y., Ye X., Hui Z., Jiao D., Xie Y., Chen S., Ding J. Synergistic effect of adsorption-photocatalytic reduction of Cr (VI) in wastewater with biochar/TiO2 composite under simulated sunlight illumination. Physical Chemistry Chemical Physics. 2024; 26: 15891-15901. DOI: https://doi.org/10.1039/D4CP01226G.

31. Zhuravleva E.V., Zhuravleva N.V., Mikhailova E.S., Sozinov S.A., Ismagilov Z.R. Study of the granulometric and morphological composition of coal powders. Chemistry for Sustainable Development. 2021; 29: 525–535. DOIhttps://doi.org/10.15372/CSD2021330.

32. Krysanova K.O., Krylova A.Yu., Pudova Ya.D., Borisov A.V. Issledovanie mineral'nykh komponentov biouglei iz opila, poluchennykhn iz kotemperaturnymi metodami.[Research on the mineral components of bio-coal from sawdust obtained by low-temperature methods]. Rossiyskiy zhurnal«Ugol'» = Russian Journal «Coal». 2021; 12 (1149): 41-43. (In Russ.). DOI: https://doi.org/10.18796/0041-5790-2021-12-41-43 URL: https://elibrary.ru/item.asp?id=47428321.

33. Krylova A.Yu., Gorlov E.G., Shumovskii A. V. Poluchenie biouglya pirolizom biomassy. [Production of biochar by biomass pyrolysis]. Rossiyskiy zhurnal«Khimiya tverdogo topliva» =Russian Journal «Solid fuel chemistry». 2019; 6: 55-64. (In Russ.). DOI: https://doi.org/10.1134/S0023117719060100 URL: https://elibrary.ru/item.asp?id=41140404.

34. Basak M., Rahman L.,Ahmed F.,Biswas B., Sharmin N. The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach. Journal of Alloys and Compounds. 2022; 895 (2). 162694.DOI:https://doi.org/10.1016/j.jallcom.2021.162694.

35. Islam A.M., Ishtiaque S.M., Mamun M. A., S. Hoque S.M. Effect of particle size and composition on local magnetic hyperthermia of chitosan-Mg1−xCoxFe2O4nanohybrid. Frontiers in Chemistry. 2024; 12: 1-23. DOI: https://doi.org/10.3389/fchem.2024.1347423.

36. Nha T.T.N.,Toan D.N., Nam Ph. H., Manh D.H., Khan D.Th., PhongPh.Th. Determine elastic parameters and nanocrystalline size of spinel ferrites MFe2O4 (M = Co, Fe, Mn, Zn) through X-ray diffraction and infrared spectrum: Comparative approach. Journal of Alloys and Compounds. 2024; 996: 174773. DOI: https://doi.org/10.1016/j.jallcom.2024.174773.

37. Nguyen T.H., Nguyen X.H., Do T.G., Nguen L.H. Development of biochar supported NiFe2O4 composite for peroxydisulfate (PDS) activation to effectively remove moxifloxacin from wastewater. Chemical Engineering Journal Advances. 2023; 16: 100550. DOI: https://doi.org/10.1016/j.ceja.2023.100550.

38. Sanaz A., Saeid S., Mahboobeh Z., Hossein S. Development of functionalized biochar composites for enhanced boron adsorption from aqueous solutions. Heliyon. 2025; 11 (2): e41720. DOI: https://doi.org/10.1016/j.heliyon.2025.e41720.

39. Zhang X., Zhao B., Liu H., Zhao Y., Li L. Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environmental Technology & Innovation. 2022; 26: 102288.1-11. DOI: https://doi.org/10.1016/j.eti.2022.102288

40. Usharani T., Baskar R., Palanisamy B., Myilsamy M. Efficient photocatalytic degradation of 2,4-dinitrophenol over mesoporous Zr and Ce co-doped TiO2 under visible light. Desalination and Water Treatment. 2021; 217: 320-328. DOI: https://doi.org/10.5004/dwt.2021.26901.


Login or Create
* Forgot password?