HF RADIO CHANNEL MODELING BY A WAVEGUIDE APPROACH
Abstract and keywords
Abstract (English):
We present a modified method of HF radio channel modeling based on a waveguide approach. The waveguide approach represents the electromagnetic field of radiation inside the Earth—ionosphere waveguide as an eigenfunction series of a radial boundary problem with impedance conditions on the Earth surface and radiation conditions at infinity. The transfer function of the radio channel is represented as a series of products of angular-operator Green functions, excitation coefficients, and coefficients for receiving individual normal modes. We have obtained a solution of the boundary value problem of determining the eigenfunctions and eigenvalues of the radial operator. The solution can be applied to the frequency range below the ionospheric F-layer critical frequency. We examine algorithms for calculating distance-frequency, frequency-angular, and amplitude characteristics of signals by analyzing and numerically summarizing the series in terms of strongly damped normal modes.

Keywords:
radio wave propagation, radio channel, waveguide approach, simulation, ionosphere sounding
Text
Text (PDF): Read Download
References

1. Ahluwalia D.S., Keller J.B. Exact and asymptotic representations of the sound field in a stratified ocean. Wave Propagation and Underwater Acoustics. Springer, Berlin, Heidelberg. 1977, pp. 14-85. DOI:https://doi.org/10.1007/3-540-08527-0_2.

2. Aizenberg G.Z., Belousov S.P., Zhurbenko E.M. Short-wave antennas. Moscow, Radio and communication Publ., 1985, 536 p. (In Russian).

3. Altyntseva V.I., Ilyin N.V., Kurkin V.I. Simulation of a decameter radio channel based on the method of normal waves. Technique of communication facilities. SS ser. Moscow: Ekos Publ., 1987, iss. 5, pp. 28-34. (In Russian).

4. Anderson S. Cognitive HF radar. J. Eng. 2019, vol. 2019, iss. 20, pp. 6772-6776. DOI:https://doi.org/10.1049/joe.2019.0537.

5. Avdeev V.B., Demin A.V., Kravtsov Yu.A., Tinin M.V., Yarygin A.P. The interferential integral method (review) Radiophys Quantum Electron. 1988, vol. 31, pp.907-921.

6. Ayliffe J.K., Durbridge L.J., Frazer J.F., Gardiner-Garden R.S., Heitmann A.J., Praschifka J., et al. The DST Group High-Fidelity, Multichannel Oblique Incidence Ionosonde. Radio Sci. 2019, vol. 54, no. 1, pp. 104-114. DOI:https://doi.org/10.1029/2018RS006681.

7. Barabashov B.G., Vertogradov G.G. Dinamic adaptive physically-structural model of ionospheric sky-wave channel. Mathematical Modeling. 1996, vol. 8, no. 2, pp. 3-18. https://www.mathnet.ru/php/agreement.phtml?option_lang=rus. (In Russian).

8. Baranov V.A., Popov A.V. Generalization of the parabolic equation for EM waves in a dielectric layer of nonuniform thickness. Wave Motion. 1993, vol. 17, no. 4, pp. 337-347. DOI:https://doi.org/10.1016/0165-2125(93)90013-6.

9. Baranov V.A., Karpenko A.L., Popov A.V. Evolution of Gaussian beams in the nonuniform Earth-ionosphere waveguide. Radio Sci. 1992, vol. 27, no. 2, pp. 307-314. DOI:https://doi.org/10.1029/91RS02639.

10. Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather. 2017, vol. 15, no.2, pp. 418-429.

11. Bremmer H. Terrestrial Radio Waves. Theory of Propagation, Amsterdam, 1949, 343 p.

12. Cherkashin Yu.N. Application of parabolic equation method for calculation wavefields in inhomogeneous media Radio Engineering and Electronic Physics. 1971, vol. 16, no. 1, pp. 173-174. (In Russian).

13. Chernov Yu.A. Backscatter sounding ionosphere. Moscow, Svyaz Publ.,1971, 204 p. (In Russian).

14. Davydenko M.A., Ilyin N.V., Khakhinov V.V. On the shape of measured spectra of the ionosphere sounding by an FMCW signal under dispersion case. J. Atmos. Solar-Terr. Phys. 2002, Vol. 64, no. 17, pp. 1897-1902. DOI:https://doi.org/10.1016/S1364-6826(02)00196-7.

15. Fedoryuk M.V. Asymptotic methods for linear ordinary differential equations. Moscow, Nauka Publ., 1983, 352 p. (In Russian).

16. Fock V. A. Problems of diffraction and propagation of electromagnetic waves. Moscow, Sov. Radio Publ. 1970, 520 p. (In Russian).

17. Ginzburg V.L. Propagation of Electromagnetic Waves in Plasmas. New York: Pergamon Press. 1964.

18. Gurevich A.V., Tsedilina E.E. Long distance propagation of HF radio waves. Berlin: Springer-Verlag, 1985.

19. Heading D. Introduction to the method of phase integrals (WKB method). Moscow, Mir Publ., 1965, 240 p. (In Russian).

20. Ipatov E.B., Lukin D.S., Palkin E.A. Numerical realization of the Maslov canonical operator method for problems of shortwave radio propagation in the ionosphere of the earth. Radiophysics and Quantum Electronics. 1990, vol. 33, no. 5, pp. 411-420. DOI:https://doi.org/10.1007/BF01045406.

21. Ipatov E.B., Kryukovskii A.S., Lukin D.S., Palkin E.A., Rastyagaev D.V. Methods of simulation of electromagnetic wave propagation in the ionosphere with allowance for the distributions of the electron concentration and the Earth’s magnetic field. J. Commun. Technol. Electron. 2014, vol. 59, no. 12, pp. 1341-1348. DOI:https://doi.org/10.1134/S1064226914120079.

22. Ishimaru A. Wave propagation and scattering in random media. Academic press, New York, 1978, 250 p.

23. Ivanov D.V., Ivanov V.A., Ovchinnikov V.V., Elsukov A.A., Ryabova M.I. Adaptive wideband equalization for frequency dispersion correction in HF band considering variations in interference characteristics and ionosphere parameters. ITM Web Conf. 2019a, vol. 30, no. 15021, pp. 1-6. DOI:https://doi.org/10.1051/itmconf/20193015021.

24. Ivanov V.A., Ivanov D.V., Ryabova N.V., Ryabova M.I., Chernov A.A., Ovchinnikov V.V. Studying the parameters of frequency dispersion for radio links of different length using software-defined radio based sounding system. Radio Sci. 2019b, vol. 54, no. 1, pp. 34-43. DOI:https://doi.org/10.1029/2018RS006636.

25. Ivanov V.A., Kurkin V.I., Nosov V.E., Uryadov V.P., Shumaev V.V. Chirp ionosonde and its application in the ionospheric research. Radiophysics and Quantum Electronics. 2003, vol. 46, iss. 11, pp. 821-851.

26. Kamel A., Felsen L. B. On the ray equivalent of a group of modes. The Journal of the Acoustical Society of America. 1982, vol. 71, no. 6, pp. 1445-1452. DOI:https://doi.org/10.1121/1.387841.

27. Kazantsev A.N., Lukin D.S., Spiridonov Yu.G. A method for studying the propagation of radio waves in an inhomogeneous magnetoactive ionosphere. Space Res. 1967, vol. 5, no. 4, pp. 593-600. (In Russian).

28. Khakhinov V.V. Receiving antenna electrodynamic model in terms of waveguide representation of HF field. Solar-Terr. Phys. 2018, vol. 4, iss. 3, pp. 92-95. DOI:https://doi.org/10.12737/stp-43201812.

29. Khakhinov V.V., Kurkin V.I. Waveguide approach to modeling of the ionosphere radiochannel. Proc. of the 11-th Inter. Conf. on Mathematical Methods in Electromagnetic Theory MMET-2006, IEEE: 06EX1428. Kharkiv, Ukraine. 2006, pp. 284-286. DOI:https://doi.org/10.1109/MMET.2006.1689693.

30. Krasnushkin P.E. The method of normal waves as applied to the problem of long-distance radio communications. Moscow: Publishing House of Moscow State University. 1947, 52 p. (In Russian).

31. Krasnushkin P.E., Yablochkin N.A. Theory of propagation of superlong waves. Moscow, Computing Center of the Academy of Sciences of the USSR Publ., 1963, 94 p. (In Russian).

32. Kravtsov Yu.A., Orlov Yu.I. Geometrical Optics of Inhomogeneous Media. Springer, Berlin. 1990.

33. Kryukovskii A.S., Lukin D.S., Palkin E.A., Rastyagaev D.V Wave catastrophes: Types of focusing in diffraction and propagation of electromagnetic waves. J. Commun. Technol. Electron. 2006, vol. 51, no. 10, pp. 1087-1125. DOI:https://doi.org/10.1134/S1064226906100019.

34. Kurkin V.I., Khahinov V.V. On the excitation of a spherical waveguide Earth-ionosphere by an arbitrary current distribution. Research on Geomagnetism, Aeronomy and Solar Physics. Moscow, Nauka Publ., 1984, iss. 69, pp. 16-22. (In Russian).

35. Kurkin V.I., Orlov I.I., Popov V.N. Normal Wave Technique in HF Radio Communication Problem. Moscow, Nauka Publ., 1981. (In Russian).

36. Kurkin V.I., Orlov A.I., Orlov I.I, Popov V.N., Potekhin A.P. Investigation of the envelopes of a pulsed HF signal in the vicinity of a caustic based on the method of normal waves. Research on Geomagnetism, Aeronomy and Solar Physics. Moscow: Nauka Publ., 1982, iss. 60, pp. 198-205. (In Russian).

37. Kurkin V.I., Orlov A.I., Orlov I.I. Scheme for calculating the characteristics of a pulsed decameter radio signal based on the numerical summation of normal waves. Research on Geomagnetism, Aeronomy and Solar Physics. M.: Nauka Publ., 1986, iss. 75, pp. 159-164. (In Russian).

38. Leontovich M.A., Fok V.A. Solving the problem of propagation of electromagnetic waves along the surface of the Earth using the parabolic equation method. J. Experimental and Theoretical Physics. 1946, vol. 16, no. 7, pp. 557-573. (In Russian).

39. Lukin D.S., Spiridonov Yu.G. Application of the method of characteristics for the numerical solution of problems of radio wave propagation in an inhomogeneous and nonlinear medium. J. Communications Technology and Electronics. 1969, vol. 14, no. 9, pp. 1673-1677. (In Russian).

40. Makarov G.I., Novikov V.V., Rybachek S.T. Propagation of Radio Waves in the Earth-Ionosphere Waveguide Channel and in the Ionosphere. Moscow, Nauka Publ., 1993, 148 p. (In Russian).

41. Podlesnyi A.V., Brynko I.G., Kurkin V.I., et al. Multifunctional chirp ionosonde for monitoring the ionosphere. Heliogeophys. Res. 2013, no. 4, pp. 24-31. (In Russian).

42. Podlesnyi A.V., Lebedev V.P., Ilyin N.V., Khahinov V.V. Implementation of the method for restoring the transfer function of the ionospheric radio channel based on the results of sounding the ionosphere with a continuous chirp signal. Electromagnetic waves and electronic systems. 2014, vol. 19, no. 1, pp. 63-70. (In Russian).

43. Ponomarchuk S.N. Model of the electrical properties of the earth's surface in the HF range. Research on Geomagnetism, Aeronomy and Solar Physics. Moscow, Nauka Publ., 1984, iss. 69, pp. 42-47. (In Russian).

44. Ponomarchuk S.N., Ilyin N.V., Penzin M.S. The model of radio wave propagation in frequency range 1-10 MHz on the base of normal wave technique. Solar-Terr. Phys. 2014, iss. 25, pp. 33-39. (In Russian).

45. Ponomarchuk S.N., Grozov V.P., Ilyin N.V., Kurkin V.I., Oinats A.V., Penzin M.S., et al. Backscatter Ionospheric Sounding by a Continuous Chirp Signal. Radiophysics and Quantum Electronics. 2022, vol. 64, iss. 8-9, pp. 591-604. DOI:https://doi.org/10.1007/s11141-022-10162-7.

46. Popov V.N., Potekhin A.P. On the propagation of decameter radio waves in the azimuth-symmetric “Earth-ionosphere” waveguide. Research on Geomagnetism, Aeronomy and Solar Physics. Moscow, Nauka Publ., 1984, iss. 69, pp. 9-15. (In Russian).

47. Potekhin A.P., Orlov I.I. Approximate summation formula for a series of normal waves. Research on Geomagnetism, Aeronomy and Solar Physics. Moscow, Nauka Publ., 1981, iss. 57, pp. 135-137. (In Russian).

48. Zernov N.N., Gherm V.E., Zaalov N.Yu., Nikitin A.V. The generalization of Rytov's method to the case of inhomogeneous media and HF propagation and scattering in the ionosphere. Radio Sci. 1992, vol. 27, no. 2, pp. 235-244. DOI:https://doi.org/10.1029/91rs02920.

49. URL: http://ckp-rf.ru/ckp/3056/ (accessed June 2, 2023).

Login or Create
* Forgot password?