Irkutsk, Russian Federation
This paper discusses peculiarities of the great mid-latitude aurora that occurred during the extreme magnetic storm on February 11, 1958. This mid-latitude aurora had unusual optical and spectral characteristics, among which, first of all, were very high (10⁵–10⁸ R) intensities of atomic oxygen [OI] 630.0 nm emission and an unusually high ratio of the intensities of two forbidden lines of oxygen [OI] 630.0 nm and 557.7 nm (I₆₃₀/I₅₅₇.₇). In some points, this ratio was as high as 10³–10⁴. Analysis of I₆₃₀ dynamics during other extreme geomagnetic storms and associated geophysical conditions and physical processes in Earth’s ionosphere and magnetosphere allows us to assume that great mid-latitude auroras are formed during intense substorms in main phases of magnetic storms. In order to interpret the observed features of the February 11, 1958 mid-latitude aurora, we propose to examine the mechanism of level [OI] ¹D selective filling in which reactions of resonance recharge of oxygen ions O⁺(²D)+O (³P)→O⁺(⁴S)+O(³P, ¹D) and/or reactions of oxygen atom and molecule collisions with excited components of odd nitrogen can be implemented.
mid-latitude aurora, magnetic storms, February, 11 1958 great aurora
1. Akasofu S.-I. The dynamic aurora. Scientific American. 1989, vol. 260, iss. 5, pp. 90–97.
2. Akasofu S.-I. Relationship between geomagnetic storms and auroral/magnetospheric substorms: Early studies. Review. Front. Astron. Space Sci. Sec. Space Phys. 2020, vol. 7, pp. 1–16. DOI:https://doi.org/10.3389/fspas.2020.604755.
3. Akasofu S., Chapman S. Large-scale auroral motions and polar magnetic disturbances – III: The aurora and magnetic storm of 11 February 1958. J. Atmos. Terr. Phys.1962, vol. 24, pp. 785–796. DOI:https://doi.org/10.1016/0021-9169(62)90199-X.
4. Berrilli F., Giovannelli L. The great aurora of 4 February 1872 observed by Angelo Secchi in Rome. J. Space Weather Space Clim. 2022, vol. 12, 3. DOI: 10.1051/ swsc/2021046.
5. Danilov A.D. Response of F region to geomagnetic disturbances. Geliogeofizicheskiye issledovaniya [Heligeophysical Res.]. 2013, iss. 5, pp. 1–33. (In Russian).
6. Dashkevich Zh.V., Ivanov V.Ye. Analysis of 630-nm emission sources in auroras. Cosmic Res. 2022, vol. 60, no. 5, pp. 332–339.
7. Dmitriev A., Yeh H.-C. Storm-time ionization enhancements at the topside low-latitude ionosphere. Ann. Geophys. 2008, vol. 26, pp. 867–876.
8. Dremukhina L.A., Yermolaev Yu.I., Lodkina I.G. The differencies in dynamics of the asymmetric part of the magnetic disturbance during the periods of magnetic storms induced by different interplanetary sources Geomagnetism and Aeronomy. 2020, vol. 60, no. 6, pp. 714–726. DOI:https://doi.org/10.1134/S0016793220060031.
9. Fishkova L.M., Martsvaladze N.M. The behavior of HI 656.3 and [OI] 630 nm emissions in the upper atmosphere during magnetic storms with sudden commancement. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1985, vol. 25, no. 3, pp. 509–511. (In Russian).
10. Gogosheva T.S. N(2D) contribution to red oxygen excitation. Blgarsko geofizichno spisanie [Bulgarian Geophysical J.] 1979, vol. 5, no. 1, pp. 33–35. (In Russian).
11. Hikosaka T. On the great enhancement of the line [OI] 6300 in the aurora at Niigata on February 11, 1958. Rep. Ionosp. Res. Japan. 1958, vol. 12, no. 4, pp. 469–471.
12. Ievenko I.B., Parnikov S.G. Relationship of the SAR arc dynamics to substorm injection based on the aurorae observation. Magnetospheric phenomena in the plasmapause vicinity. Geomagnetism and Aeronomy. 2022, vol. 62, no. 7, pp. 32–49. DOI:https://doi.org/10.1134/S0016793222020098.
13. Kataoka R., Uchino S., Fujiwara Y., Fujita S., Yamamoto K. Fan-shaped aurora as seen from Japan during a great magnetic storm on February 11, 1958. J. Space Weather Space Clim. 2019, vol. 9, A16. DOI:https://doi.org/10.1051/swsc/2019013.
14. Knipp D.J., Bernstein V., Wahl K., Hayakawa H. Timelines as a tool for learning about space weather storms. J. Space Weather Space Clim. 2021, vol. 11, 29. DOI:https://doi.org/10.1051/swsc/2021011.
15. Mahadevan P., Roach F.E. Mechanism for the auroral emission of OI (6300 Å). Nature. 1968, vol. 220, pp. 150–152. DOI:https://doi.org/10.1038/220150B0.
16. Manring E.R., Pettit H.B. Photometric observations of the 5577 Å and 6300 Å emissions made during the aurora of February 10–11, 1958. J. Geophys. Res. 1959, vol. 64, no. 2, pp. 149–153.
17. Mikhalev A.V. Mid-latitude airglows in East Siberia in 1991–2012. Solnechno-zemnaya fizika [Solar-Terr. Phys.]. 2013, iss. 24, pp. 78–83. (In Russian).
18. Mikhalev A.V., Beletsky A.B., Vasil'yev R.V., Zherebtsov G.A., Podlesny S.V., Tashchilin M.A., Artamonov M.F. Spectral and photometric characteristics of mid-latitude auroras during the magnetic storm of March 17, 2015. Solar-Terr. Phys. 2018, vol. 4, iss. 4, pp. 42–47. DOI:https://doi.org/10.12737/stp-44201806.
19. Mikhalev A.V. Mid-latitude aurora in solar cycles 23–24 from observations in the south of Eastern Siberia. Solar-Terr. Phys. 2019, vol. 5, iss. 4, pp. 66–73. DOI:https://doi.org/10.12737/stp-54201909.
20. Nikolayev A.V. Issledovanie tokovoi sistemy subburi po dannym sputnikovykh izmereniy [Research into Substorm Current System From Satellite Data]. PhD Thesis. Saint-Petersburg, 2015. 150 p. (In Russian).
21. Rassoul H.K., Rohrbaugh R.P., Tinsley B.A. Low-latitude particle precipitation and associated local magnetic disturbance. J. Geophys. Res. 1992, vol. 97, iss. A4, pp. 4041–4052. DOI:https://doi.org/10.1029/91JA03028.
22. Rassoul H.K., Rohrbaugh R.P., Tinsley B.A., Slater D.W. Spectrometric and photometric observations of low-latitude aurorae. J. Geophys. Res. 1993, vol. 98, no. A5, pp. 7695–7709. DOI:https://doi.org/10.1029/92JA02269.
23. Rees M.H., Luckey D. Auroral electron energy derived from ratio of spectroscopic emissions. 1. Model computations. J. Geophys. Res. 1974, vol. 79, iss. 34, pp. 5181–5186.
24. Saiz E., Cid C., Guerrero A. The relevance of local magnetic records when using extreme space weather events as benchmarks. J. Space Weather Space Clim. 2021, vol. 11, 35. DOI:https://doi.org/10.1051/swsc/2021018.
25. Sergeev V.A., Tsyganenko N.A., Smirnov M.V., Nikolaev A.V., Singer H.J., Baumjohann W. Magnetic effects of the substorm current wedge in a “spread-out wire” model and their comparison with ground, geosynchronous, and tail lobe data. J. Geophys. Res. 2011, vol. 116, A07218. DOI: 10.1029/ 2011JA16471.
26. Shefov N.N., Yurchenko O.T. Absolute intensities of aurora emissions observed in Zvenigorod. Polyarnye siyaniya i svechenie nochnogo neba [Auroras and night airglows]. 1970, no. 18, pp. 50–96.
27. Shefov N.N., Semenov A.I., Khomich V.Yu. Izluchenie verkhnei atmosfery – indikator eye struktury i dinamiki [The upper atmosphere emission as an indicator of its structure and dynamics]. Moscow, GEOS Publ., 2006, 741 p. (In Russian).
28. Shiokawa K., Ogawa T., Kamide Y. Low-latitude auroras observed in Japan: 1999–2004. J. Geophys. Res. 2005, vol. 110, iss. A5, A05202. DOI:https://doi.org/10.1029/2004JA010706.
29. Shiokawa K., Miyoshi Y., Brandt P.C., Evans D.S., Frey H.U., Goldstein J., Yumoto K. Ground and satellite observations of low-latitude red auroras at the initial phase of magnetic storms. J. Geophys. Res. 2013, vol. 118, no. 1, pp. 256‒270. DOI:https://doi.org/10.1029/2012JA018001.
30. Solomon S.C., Hays P.B., Abreu V.J. The auroral 6300 Å emission: Observations and modeling. J. Geophys. Res. 1988, vol. 93, no. A9, pp. 9867–9882.
31. Shuiskaya F.K. Observation of 11.II.1958 aurora at Roshchino station. Polyarnye siyaniya i svechenie nochnogo neba [Auroras and night airglows]. 1967, no. 13, pp. 87–97. (In Russian).
32. Tinsley B.A., Rohrbaugh R.P., Rassoul H., Sahai Y., Teixeira N.R., Slater D. Low-latitude aurorae and storm time current systems. J. Geophys. Res. 1986, vol. 91, iss. A10, pp. 11257–11269. DOI:https://doi.org/10.1029/JA091iA10p11257.
33. Truttse Yu.L. Upper atmosphere during geomagnetic disturbances. Polyarnye siyaniya i svechenie nochnogo neba [Auroras and night airglows]. 1973, no. 20, pp. 5–22. (In Russian).
34. Tyasto M. I., Ptitsyna N.G., Veselovskiy I.S., Yakovchuk O.S. Extreme magnetic storm of September 2–3, 1859 from archive magnetic data of Russian network of observations. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2009, vol. 49, no. 2, pp. 163–173. (In Russian).
35. Vallance J.A. Historical review of great aurora. Can. J. Phys. 1992, vol. 70, iss. 7, pp. 479–487. DOI:https://doi.org/10.1139/p92-083.
36. Wallace L. An analysis of spectrogram of the red aurora of February, 1958, in the wavelength range. Can. J. Phys. 1960, vol. 38, no. 3, pp. 453–457. DOI:https://doi.org/10.1016/0021-9169(59)90142-4.
37. Yevlashin L.S. Great aurora of 11.02.1958. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1962, vol. 2, no. 1, pp. 74–78. (In Russian).
38. Zolotukhina N.A., Polekh N.M., Mikhalev A.V., Beletsky A.B., Podlesny S.V. Peculiarities of 630.0 and 557.7 nm emissions in the main ionospheric trough: March 17, 2015. Solar-Terr. Phys. 2021, vol. 7, iss. 3, pp. 53–67. DOI:https://doi.org/10.12737/stp-73202105.
39. URL: https://wdc.kugi.kyoto-u.ac.jp/dst_realtime/index.html (accessed January 25, 2024).
40. URL: http://ckp-angara.iszf.irk.ru (accessed January 25, 2024).