с 01.01.2021 по настоящее время
Северо-Восточный федеральный университет им. М.К. Аммосова (доцент)
с 01.01.2018 по 01.01.2021
Якутск, Республика Саха (Якутия), Россия
Якутск, Россия
Якутск, Россия
УДК 551.510.537 Магнитосфера
Using numerical calculations with a model of the high-latitude ionosphere in Eulerian variables, we study the influence of magnetospheric convection on the large-scale structure of the ionosphere during a moderate geomagnetic storm for winter solstice conditions. The disturbed electric field of convection is shown to cause changes in the shapes and sizes of the main structural formations of the ionosphere. We have found out that the effect of a geomagnetic storm depends on the time of the beginning of the disturbance due to the mismatch between the geographic and geomagnetic poles (UT control). The effect is most pronounced in the case of a storm that begins at 16 UT, when the disturbed electric field of magnetospheric convection transfers plasma of the daytime ionosphere to the nightside. It is shown that during periods of disturbances along with the horizontal component of the electromagnetic drift its vertical component, which causes an increase in the height of the F2-layer maximum on the dayside and its decrease on the nightside, also has a significant effect.
magnetospheric convection, magnetic storm, ionosphere model, high-latitude ionosphere, subauroral ionosphere, mismatch of poles
1. Burton R.K., McPherron R.L., Russel C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, vol. 80, no. 31. pp. 4204–4214. DOI:https://doi.org/10.1029/JA080i031p04204.
2. Chapman S. The absorption and dissociative of ionizing effect of monochromatic radiation in an atmosphere on a rotation. Earth. Proc. Phys. Soc. 1931, vol. 43. pp. 483–501. DOI:https://doi.org/10.1088/0959-5309/43/5/302.
3. Danilov A.D. Reaction of F region to geomagnetic disturbances (review). Geliogeofizicheskie issledovaniya [Helio-Geophysic Research]. 2013, no. 5, pp. 1–33. (In Russian).
4. David M., Schunk R. Sojka J. The effect of downward electron heat flow and electron cooling processes in the high-latitude ionosphere. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, pp. 2399–2409. DOI:https://doi.org/10.1016/j.jastp.2011.08.009.
5. Deng Y., Ridley A.J. Role of vertical ion convection in the high-latitude ionospheric plasma distribution. J. Geophys. Res. 2006, vol. 111, A09314. DOI:https://doi.org/10.1029/2006JA011637.
6. Evans J.V. Millstone Hill Thomson scatter results for 1969. Technical Report 513. Massachusetts Institute of Technology, 1974, 140 p.
7. Fang X., Randall C., Lummerzheim D., Solomon S., Mills M.J., Marsh D.R., et al. Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons. J. Geophys. Res. 2008, vol. 113, iss. 9. DOI:https://doi.org/10.1029/2008 JA013384.
8. Golikov I.A., Gololobov A.Yu., Popov V.I. Numerical simulation of thermal regime of high-latitude ionosphere. Vestnik Severo-Vostochnogo federal'nogo universiteta [Vestnik of North-Eastern Federal University]. 2012, vol. 9, no. 3, pp. 22–28. (In Russian).
9. Golikov I.A., Gololobov A.Yu., Popov V.I. Modelling the electron temperature distribution in F2 region of high-latitude ionosphere for winter solstice. Solar-Terr. Phys. 2016, vol. 2, iss. 4, pp. 54–62. DOI:https://doi.org/10.12737/24269.
10. Golikov I., Gololobov A., Baishev D. Universal time control of the parameters of the electron temperature enhancement zone in the winter subauroral ionosphere. J. Atmos. Solar-Terr. Phys. 2020, vol. 211. DOI:https://doi.org/10.1016/j.jastp.2020.105458.
11. Golikov I., Gololobov A., Baishev D., Makarov G. Determination of the enhancement in electron temperature in the subauroral ionosphere during magnetic storms on a global scale. Geomagnetism and Aeronomy. 2022, vol. 61, suppl. 1, pp. S103–S115. DOI:https://doi.org/10.1134/S001679322201008X.
12. Heppner J.P., Maynard N.C. Empirical high-latitude electric field models. J. Geophys. Res. 1987, vol. 92, pp. 4467–4489.
13. Klimenko V.V., Namgaladze A.A. The effects of zonal electric field in the daytime winter midlatitude ionosphere. Geomagnetizm i ajeronomija [Geomagnetism and aeronomy]. 1976, vol. 16, pp. 1117–1119. (In Russian).
14. Klimenko M.V., Klimenko V.V., Bessarab F.S., Ratovsky K.G., Zakharenkova I.E., Nosikov I.A., Stepanov A.E., et al. Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HF radiowave propagation. I. Ionospheric effects.Geomagnetism and Aeronomy. 2015, vol. 55, no. 6, pp. 744–762.
15. Klimenko M.V., Zakharenkova I.E., Klimenko V.V., Lukianova R.Yu., Cherniak I.V. Simulation and observation of the polar tongue of ionization at different heights during the 2015 St. Patric’s day storms. Space Weather. 2019, vol. 17, pp. 1073–1089. DOI:https://doi.org/10.1029/2018SW002143.
16. Kolesnik A.G., Golikov I.A. Study of the role of various mechanisms in formation of the F2 region of the ionosphere on a two-dimensional model Geomagnetizm i ajeronomiya [Geomagnetism and Aeronomy]. 1981, vol. 21, no. 4, pp. 612–616. (In Russian).
17. Kolesnik A.G., Golikov I.A. Three-dimensional model of the high-latitude F region with taking into account the mistmach of geographic and geomagnetic coordinates. Geomagnetizm i ajeronomiya [Geomagnetism and Aeronomy], 1982, vol. 22, no 3, pp. 435–439. (In Russian).
18. Kolesnik A.G., Golikov I.A. The “full shadow” phenomena in Earth upper atmosphere. Doklady AN SSSR [Report of Academy of Sciences USSR]. 1984, vol. 279, no. 4, pp. 832–834. (In Russian).
19. Krinberg I.A., Taschilin A.V.Ionosfera i plazmosfera [Ionosphere and Plasmasphere]. Moscow, Nauka Publ., 1984, p. 190. (In Russian).
20. Larina T.N., Glebova G.M. Investigation of electron density variation in the polar ionosphere F-layer influenced by interplanetary magnetic field By component sign. Inzhenernyi vestnik Dona [Engineering Bull. of Don]. 2019, vol. 1, 11 p. URL: http://www.ivdon.ru/uploads/article/pdf/IVD_120__larina_N.pdf_5a3560990a.pdf (accessed January 10, 2025).
21. Liu J., Wang W., Burns A., Liu L., McInerney J. A TIEGCM numerical study of the source and evolution of ionospheric F-region tongues of ionization: Universal time and interplanetary magnetic field dependence. J. Atmos. Solar-Terr. Phys. 2017, vol. 156, pp. 87–96. DOI:https://doi.org/10.1016/j.jastp.2017.03.005.
22. Lukianova R.Yu., Uvarov V.M., Coisson P. High-latitude F region large-scale ionospheric irregularities under different solar wind and zenith angle conditions. Adv. Space. Res. 2016, vol. 59, pp. 557–570. DOI:https://doi.org/10.1016/j.asr.2016.10.010.
23. Mingalev V.S. Electric field influence on the polar ionosphere. Polyarnaya ionosfera i magnitosferno-ionosfernye svyazi [Polar ionosphere and magnetosphere-ionosphere coupling]. Apatity, 1978, pp. 43–48. (In Russian).
24. Mizun Yu.G. Polyarnaya ionosfera [Polar ionosphere]. Leningrad, Nauka Publ., 1980, 216 p. (In Russian).
25. Murayama T. Coupling function between solar wind parameters and geomagnetic indices. Rev. Geophys. Space Phys. 1982, vol. 20, no. 3, pp. 623–629. DOI:https://doi.org/10.1029/RG020i003p00623.
26. Murayama T., Aoki T., Nakai H., Hakamada K. Empirical formula to relate the auroral electrojet intensity with interplanetary parameters. Planet Space. Sci. 1980, vol. 28, pp. 803–813.DOI:https://doi.org/10.1016/0032-0633(80)90078-1.
27. Picone J.M., Hedin A.E., Drob D.P. Aikin A. NRLMSISE-00 empirical model of the atmosphere: Statistical comparison and scientific issues. J. Geophys. Res. 2002, vol. 107, pp. 1501–1516. DOI:https://doi.org/10.1029/2002JA009430.
28. Prölss G.W. Ionospheric F-region storms. Handbook of Atmospheric Electrodynamics II. Eds. H. Volland. Boca Raton, CRC Press, 1995, pp. 195–248.
29. Ratovsky K.G., Klimenko M.V., Klimenko V.V., Chirik N.V., Korenkova N.A., Kotova D.S. After-effects of geomagnetic storms: statistical analysis and theoretical explanation. Solar-Terr. Phys. 2018, vol. 4, iss. 4, pp. 26–32. DOI:https://doi.org/10.12737/stp-44201804.
30. Samarskii A. The Theory of Difference Schemes. New York, Marcel Dekker, 2001, 761 p.
31. Schunk R., Nagy A. Electron temperature in the F regions of the ionosphere: theory and observations. Rev. Geophys. 1978, vol. 16, pp. 355–399. DOI:https://doi.org/10.1029/RG016i003p00355.
32. Schunk R.W., Nagy A. Ionospheres: Physics, Plasma Physics, and Chemistry. New York, Cambridge University Press, 2009, 628 p.
33. Sojka J.J., Raitt W.J., Schunk R.W. Effect of displaced geomagnetic and geographic poles on high-latitude plasma convection and ionospheric depletions. J. Geophys. Res. 1979, vol. 85, no. A10, pp. 5943–5951. DOI:https://doi.org/10.1029/JA084iA10p05943.
34. Tashchilin A.V., Romanova E.B. Numerical modeling the high-latitude ionosphere. Proc. of the COSPAR Colloquim on Solar-Terrestrial Magnetic Activity and Space Environment (STMASE). Beijing, China. Pergamon, 2002, vol. 14, pp. 315–325.
35. Tashchilin A.V., Romanova E.B. Influence of magnetospheric inputs definition on modeling of ionospheric storms. Physics of Auroral Phenomena, Proc. XXX Annual Seminar, 2007, pp. 189–192.
36. Uvarov V.M., Barashkov P.D. The electric field distribution types and related convection types in the polar ionosphere. Model.Geomagnetizm i ajeronomiya [Geomagnetism and Aeronomy]. 1989, vol. 29, no. 4, pp. 621–628. (In Russian).
37. Uvarov V.M., Lukianova R.Yu. The high-latitude ionosphere modelling with considering interplanetary medium.Geliogeofizicheskie issledovaniya [Helio-geophysical research]. 2014, no 7, pp. 108–118. (In Russian).
38. Uvarov V.M., Lukianova R.Yu. Numerical modeling of the polar F region ionosphere taking into account the solar wind conditions. Adv. Space. Res. 2015, vol. 56, no. 11, pp. 2563–2574. DOI:https://doi.org/10.1016/j.asr.2015.10.004.
39. Vorobjev V.G., Yagodkina O.I., Katkalov Yu.V. Auroral Precipitation Model and its application to ionospheric and magnetospheric studies. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 157–171. DOI:https://doi.org/10.1016/j.jastp.2013.05.007.
40. Watkins B.J. A numerical computer investigation of the polar F-region ionosphere. Planet. Space Sci. 1978, vol. 26, pp. 559–569. DOI:https://doi.org/10.1016/0032-0633(78)90048-X.
41. Weimer D.R. A flexible, IMG dependent model of high-latitude electric potentials having “space weather” applications. Geophys. Res. Lett. 1996, vol. 23, no. 18. pp. 2549–2552.
42. Yermolaev Yu.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Yu. Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters. Cosmic Res. 2011, vol. 49, no 1, pp. 21–34. DOI:https://doi.org/10.1134/S0010 952511010035.
43. Zherebtsov G.A., Mizun Yu.G., Mingalev V.S. Fizicheskie protsessy v polyarnoi ionosfere [Physical processes in the polar ionosphere]. Moscow, Nauka Publ., 1988, 231 p. (In Russian).
44. Zou S., Ridley A., Moldwin M.B., Nicolls M.J., Coster A.J., Thomas E.G., Ruohoniemi J.M. Multi-instrument observations of SED during 24-25 October 2011 storm: Implications for SED formation processes. J. Geophys. Res.: Space Phys. vol. 118. pp. 7798–7809. DOI:https://doi.org/10.1002/2013JA018860.
45. URL: http://omniweb.gsfc.nasa.gov (accessed January 10, 2025).



