GEOMAGNETIC CUTOFF OF COSMIC RAYS DURING THE MARCH 23–24, 2023 MAGNETIC STORM: RELATIONSHIP WITH SOLAR WIND PARAMETERS AND GEOMAGNETIC ACTIVITY TAKING INTO ACCOUNT LATITUDINAL EFFECTS
Аннотация и ключевые слова
Аннотация (русский):
In this paper, we calculate geomagnetic cutoff rigidities during the strong magnetic storm of March 23–24, 2023, using 1) the spectrographic global survey method based on observational data from cosmic ray recording by the global network of stations (Rsgs); 2) numerical trajectory calculations in a model magnetic field of the magnetosphere (Reff). The geomagnetic cutoff rigidity has been determined for nine cosmic ray stations at different latitudes. We calculated the correlations of the variations in the geomagnetic cutoff rigidity ΔRsgs and ΔReff with magnetic and dynamic solar wind parameters and the geomagnetic activity indices Dst and Kp. It has been found that the geomagnetic cutoff rigidity calculated by both methods correlate most strongly with Dst and the electromagnetic parameters of the solar wind. No significant correlation with the dynamic parameters was observed. The analysis has shown that the response of ΔRsgs to the controlling magnetic parameters and Dst changes with latitude of the observation station: the correlation reaches its highest values at midlatitudes and drops significantly toward the equator. The correlations of ΔReff calculated by the model do not reveal a latitudinal dependence.

Ключевые слова:
cosmic rays, geomagnetic threshold, cosmic ray cutoff rigidity, interplanetary magnetic field, geomagnetic activity
Список литературы

1. Adriani O., Barbarino G.C., Bazilevskaya G.N., Bellotti R., Boezio M., Bogomolov E.A., et al. PAMELA’s measurements of geomagnetic cutoff variations during the 14 December 2006 storm. Space Weather. 2016, vol. 14, no. 3. DOI:https://doi.org/10.1002/2016SW001364.

2. Akasofu S.-I. The magnetospheric currents: An introduction. In T.A. Potemra (Ed.), Magnetospheric currents. Geophysical Monograph Series. 1984, vol. 28, pp. 29–48. DOI:https://doi.org/10.1029/GM028p0029.

3. Burov V.A., Meleshkov Yu.S., Ochelkov Yu.P. The technique of operational evaluation of the level of radiation danger due to the cosmic weather disturbance during air travel. Heliogeophysical Research. 2005, iss. 7, pp. 1–41.

4. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, vol. 80, iss. 31, pp. 4204–4214. DOI:https://doi.org/10.1029/JA080i031p04204.

5. Danilova O.A., Ptitsyna N.G., Tyasto M.I., Sdobnov V.E. Variations in cosmic ray cutoff rigidities during the March 8–11, 2012 magnetic storm (CAWSES II period). Sol.-Terr. Phys. 2023, vol. 9, iss. 2, pp. 81–87. DOI:https://doi.org/10.12737/stp-92202310.

6. Dungey J.W. Interplanetary magnetic field and the auroral zones. Phys Rev Lett. 1961, vol. 6, pp. 47–48. DOI:https://doi.org/10.1103/PhysRevLett.6.47.

7. Iucci N., Levitin A.E., Belov A.V., Eroshenko E.A., Ptitsyna N.G., Villoresi G., et al. Space weather conditions and spacecraft anomalies in different orbits. Space Weather. 2005, vol. 3, S01001. DOI:https://doi.org/10.1029/2003SW000056.

8. Kanekal S., Baker D., Blake J., Klecker B., Cummings J., Mewaldt R., Mason G., Mazur J. High-latitude energetic particle boundaries and the polar cap: A statistical study. J. Geophys. Res.: Space Phys. 1998, vol. 103, pp. 9367–9372.

9. Kovalev I.I., Olemskoy S.V., Sdobnov V.E. A proposal to extend the spectrographic global survey method. J. Atmos. Solar-Terr. Phys. 2022, vol. 235, p. 105887. DOI:https://doi.org/10.1016/j.jastp.2022.105887.

10. Kurazhkovskaya N.A., Zotov O.D., Klain B.I. Relationship between geomagnetic storm development and the solar wind parameter β. Sol.-Terr. Phys. 2021, vol. 7, no. 4, pp. 25–34. DOI:https://doi.org/10.12737/szf-74202104.

11. Leske R.A., Mewaldt R.A., Stone E.C., von Rosenvinge T.T. Observations of geomagnetic cutoff variations during solar energetic particle events and implications for the radiation environment at the space station. J. Geophys. Res. 2001, vol. 106, pp. 30011–30022. DOI:https://doi.org/10.1029/2000JA000212.

12. Ptitsyna N.G., Danilova O.A., Tyasto M.I., Sdobnov V.E. Influence of the solar wind and geomagnetic activity parameters on variations in the cosmic ray cutoff rigidity during strong magnetic storms. Geomagnetism and Aeronomy. 2019, vol. 59, no. 5, pp. 530–538. DOI:https://doi.org/10.1134/S0016793219050098.

13. Shea M.A., Smart D.F., McCracken K.G. A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field. J. Geophys. Res. 1965, vol. 70, pp. 4117–4130.

14. Shimazu H. Solar proton event and proton propagation in the Earth’s magnetosphere. J. National Institute of Information and Communications Technology. 2009, vol. 1, pp. 191–199.

15. Tahir A., Wu F., Shah M., Amory-Mazaudier C., Jamjareegulgarn P., Verhulst T.G.W., Ayyaz Ameen М. Multi-instrument observation of the ionospheric irregularities and disturbances during the 23–24 March 2023 geomagnetic storm. Remote Sensing. 2024, vol. 16, no. 9, p. 1594. DOI:https://doi.org/10.3390/rs16091594.

16. Teng W., Su Y., Ji H., Zhan Q. Unexpected major geomagnetic storm caused by faint eruption of a solar transequatorial flux rope. Nature Communications. 2024, vol. 15, pp. 9198–9214. DOI:https://doi.org/10.1038/s41467-024-53538-1.

17. Tsyganenko N.A., Singer H.J., Kasper J.C. Storm-time distortion of the inner magnetosphere: How severe can it get? J. Geophys. Res. 2003, vol. 108, no. A5, p. 1209. DOI:https://doi.org/10.1029/2002JA009808.

18. Tyasto M.I., Danilova O.A., Sdobnov V.E. Cosmic ray geomagnetic cutoff rigidities in the magnetic field of two empirical models during a strong disturbance in November 2003: A comparison of models. Geomagnetism and Aeronomy. 2012, vol. 52, pp. 1087–1096. DOI:https://doi.org/10.1134/S0016793212080208.

19. Tyssøy H.N, Stadsnes J. Cutoff latitude variation during solar proton events: Causes and consequences. J. Geophys. Res. Space. 2014, vol. 120, pp. 553–563. DOI:https://doi.org/10.1002/2014JA0200508.

20. URL: https://omniweb.gsfc.nasa.gov/form/dx1.html (accessed January 16, 2024).

21. URL: http://omniweb.gsfc.nasa.gov (accessed January 16, 2024).

22. URL: http://ckp-rf.ru/ckp/3056/ (accessed January 16, 2024).

23. URL: https://ckp-rf.ru/usu/433536 (accessed January 16, 2024).

Войти или Создать
* Забыли пароль?