Иркутск, Россия
Иркутск, Россия
The ionospheric electric potential (EP) is utilized as a characteristic of the solar forcing to determine the tropospheric response during strong disturbances. We compare EP calculations carried out using the 2001 and 2005 versions of the Weimer model. Differences in the spatial distribution of EP during geomagnetic superstorms have been revealed for the models considered. The behavior of EP anomalies and contrast averaged over high latitudes is shown. The EP contrast is the difference between EP anomalies averaged over regions of the same sign. It has been found that changes in EP anomalies differ in different versions of the model, whereas EP contrast variations, calculated by both versions, behave synchronously during disturbances. Correlation analysis of variations in the averaged EP contrast with variations in the PC geomagnetic index has shown that both can be used as indicators of solar activity to study individual geomagnetic superstorms. An increase in the EP contrast is accompanied by an increase in the contrast of the meteorological parameters, in particular in the contrast of high clouds during disturbances.
ionospheric electric potential, geomagnetic superstorm, geomagnetic index, outgoing longwave radiation, cloud, water vapor, climate
1. Abunina M.A., Shlyk N.S., Belov S.M., et al. On the most interesting events in the solar wind and cosmic rays in 2023–2024. Mezhdunarodnaya Baikal'skaya molodezhnaya nauchnaya shkola po fundamental'noi fizike. Trudy XVIII Konferentsii molodykh uchenykh «Vzaimodeistvie polei i izlucheniya s veshchestvom» [The Baikal Young Scientists’ International School on Fundamental Physics. Proc. XVIII Young Scientists’ Conference “Interaction of Fields and Radiation with Matter”]. Irkutsk, 2024, pp. 5–7. (In Russian).
2. Grechnev V.V., Uralov A.M., Chertok I.M., et al. A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. IV. Unusual magnetic cloud and overall scenario. Solar Phys. 2014, vol. 289, iss. 12, pp. 4653–4673. DOI:https://doi.org/10.1007/s11207-014-0596-5.
3. Harrison R.G., Lockwood M. Rapid indirect solar responses observed in the lower atmosphere. Proc. Roy. Soc. A. 2020, vol. 476, iss. 2241, 20200164. DOI:https://doi.org/10.1098/rspa.2020.0164.
4. Ishkov V.N. Properties and surprises of solar activity XXIII cycle. Sun and Geosphere. 2010, vol. 5, iss. 2, pp. 43–46.
5. Ishkov V.N. Current solar cycle 25 on the eve of the maximum phase. Geomagnetism and Aeronomy. 2024, vol. 64, iss. 7, pp. 1167–1175. DOI:https://doi.org/10.1134/S0016793224700257.
6. Karakhanyan A.A., Molodykh S.I. A decline of linear relation between outgoing longwave radiation and temperature during geomagnetic disturbances. JASTP. 2025, vol. 270, iss. 5, 106503. DOI:https://doi.org/10.1016/j.jastp.2025.106503.
7. Krivolutsky A.A., Vyushkova T.Y., Mironova I.A. Changes in the chemical composition of the atmosphere in the polar regions of the Earth after solar proton flares (3D modeling). Geomagnetism and Aeronomy. 2017, vol. 57, iss. 2, pp. 156–176. DOI:https://doi.org/10.1134/S0016793217020074.
8. Mironova I.A., Aplin K.L., Arnold F., et al. Energetic particle influence on the Earth’s atmosphere. Space Sci. Rev. 2015, vol. 194, iss. 1-4, pp. 1–96. DOI:https://doi.org/10.1007/s11214-015-0185-4.
9. Mokhov I.I. Russian climate research in 2019–2022. Izvestiya RAN. Fizika atmosfery i okeana [Izvestiya, Atmospheric and Oceanic Physics]. 2023, vol. 59, iss. 7, pp. 830–851. (In Russian).
10. Molodykh S.I., Zherebtsov G.A., Karakhanyan A.A. Estimation of solar activity impact on the outgoing infrared-radiation flux. Geomagnetism and Aeronomy. 2020, vol. 60, iss. 2, pp. 205–211. DOI:https://doi.org/10.1134/S0016793220020103.
11. Ptashnik I.V. Water vapour continuum absorption: short prehistory and current status. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2015, vol. 28, iss. 5, pp. 443–459. (In Russian).
12. Simonova A.A., Ptashnik I.V., Elsey J., et al. Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption. J. Quantitative Spectroscopy and Radiative Transfer. 2022, vol. 277, iss. 1, 107957. DOI:https://doi.org/10.1016/j.jqsrt.2021.107957.
13. Tinsley B.A. The global atmospheric electric circuit and its effects on cloud microphysics. Rep. on Progress in Physics. 2008, vol. 71, iss. 6, 066801. DOI:https://doi.org/10.1088/0034-4885/71/6/066801.
14. Troshichev O.A., Andrezen V.G., Vennerstrom S., Friis-Christensen E. Magnetic activity in the polar cap – A new index. Planet. Space Sci. 1988, vol. 36, iss. 11, pp. 1095–1102. DOI:https://doi.org/10.1016/0032-0633(88)90063-3.
15. Veretenenko S.V., Dmitriev P.B., Dergachev V.A. Long-term effects of solar activity on cyclone tracks in the North Atlantic. St. Petersburg State Polytechnical University J.: Physics and Mathematics. 2023a, vol. 16, iss. 1.2, pp. 454–460. DOI:https://doi.org/10.18721/JPM.161.269.
16. Veretenenko S.V., Dmitriev P.B., Dergachev V.A. Long-term changes main trajectories of extratropical cyclones in the North Atlantic and their possible association with solar activity. Geomagnetism and Aeronomy. 2023b, vol. 63, iss. 7, pp. 953–965. DOI:https://doi.org/10.1134/s0016793223070265.
17. Weimer D.R. An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J. Geophys. Res.: Space Phys. 2001, vol. 106, iss. A1, pp. 407–416. DOI:https://doi.org/10.1029/2000JA000604.
18. Weimer D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res. 2005, vol. 110, iss. A5, A05306. DOI:https://doi.org/10.1029/2004JA010884.
19. Wielicki B.A., Barkstrom B.R., Harrison E.F., et al. Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. American Meteorological Society. 1996, vol. 77, iss. 5, pp. 853–868. DOI:https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.
20. URL: https://zenodo.org/records/2530324 (accessed April 4, 2025).
21. URL: https://omniweb.gsfc.nasa.gov/html/ow_data.html (accessed April 4, 2025).
22. URL: https://iszf.irk.ru/usu-optical-instruments/ (accessed April 4, 2025).
23. URL: https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp (accessed April 4, 2025).
24. URL: https://www.ipcc.ch/report/ar6/syr/ (accessed April 4, 2025).
25. URL: https://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html (accessed April 4, 2025).
26. URL: https://pcindex.org/ (accessed April 4, 2025).



