сотрудник с 01.01.1999 по настоящее время
Якутск, Россия
с 01.01.2021 по настоящее время
Северо-Восточный федеральный университет им. М.К. Аммосова (доцент)
с 01.01.2018 по 01.01.2021
Якутск, Республика Саха (Якутия), Россия
Якутск, Россия
Якутск, Россия
Якутск, Россия
Якутск, Россия
В статье сообщается о проводимых в ИКФИА СО РАН на основе расположенной в Якутии сети геофизических станций исследованиях различных проявлений космической погоды (КП) на Земле. Отмечается, что сотрудники Института изучают различные явления, протекающие в солнечном ветре и в магнитосфере Земли: магнитные облака, эффекты Форбуша, магнитные бури, суббури и связанные с ними субавроральные свечения, а также высокоширотные импульсы в дневной магнитосфере и внезапные фазовые аномалии в нижней ионосфере. Помимо данных сети станций в Якутии для изучения этих явлений привлекаются данные других отечественных и зарубежных станций, а также прямые измерения параметров межпланетной среды и магнитосферы, которые проводятся на различных космических аппаратах. Описываются также разработанные в Институте физические модели магнитных облаков в солнечном ветре, высокоширотной возмущенной ионосферы и методы краткосрочного прогноза КП на основе измерений КЛ.
геомагнитные пульсации Pc5, эквивалентные токовые системы, азимутальное и меридиональное распространение, мониторинг космической погоды, прогноз космической погоды, нижняя ионосфера, солнечная вспышка, ОНЧ-сигнал, внезапная фазовая аномалия
1. Berezhko E.G., Starodubtsev S.A. Nature of the dynamics of the cosmic-ray fluctuation spectrum. Bull. Academy of Sciences of USSR. Ser. Physics. 1988, vol. 52, pp. 2361–2363.
2. Clilverd M.A., Rodger C.J., Thomson N.R., Brundell J.B., Ulich T., Lichtenberger J., Cobbett N., et al. Remote sensing space weather events: Antarctic‐Arctic radiation‐belt (dynamic) deposition-VLF atmospheric research Konsortium network. Space Weather. 2009, vol. 7, iss. 4, S04001. DOI:https://doi.org/10.1029/2008SW000412.
3. Cole K.D. Stable auroral red arcs, sinks for energy of Dst main phase. J. Geophys. Res. 1965, vol.70, iss. 7, pp. 1689–1706.
4. Cole K.D. Magnetospheric processes leading to mid-latitude auroras. Ann. Geophys. 1970, vol. 26, iss. 1, pp. 187–193.
5. Cornwall J.M., Coroniti F.V., Thorne R.M. Unified theory of SAR arc formation at the plasmapause. J. Geophys. Res. 1971, vol. 76, iss. 19, pp. 4428–4445.
6. George H.E., Rodger C.J., Clilverd M.A., Cresswell‐Moorcock K., Brundell J.B., Thomson N.R. Developing a nowcasting capability for X‐Class solar flares using VLF radiowave propagation changes. Space Weather. 2019, vol. 17, iss. 12, pp. 1783–1799. DOI:https://doi.org/10.1029/2019SW002297.
7. Glassmeier K.-H. Traveling magnetospheric convection twin vortices: Observations and theory. Ann. Geophys. 1992, vol. 10, iss. 8, pp. 547–565.
8. Golikov I.A., Kolesnik A.G., Chernyshov V.I., Popov V.I. Mathematical model of the F2 region of the high-latitude ionosphere taking into account the thermal regime. Bull. Yakutsk State University, 2005, vol. 2, iss. 3. pp. 61–69.
9. Golikov I.A., Gololobov A.Yu., Popov V.I. Numerical modeling of the thermal regime of the high-latitude ionosphere. Bull. North-Eastern Federal University, 2012, vol. 9, iss. 3, pp. 22–28.
10. Golikov I.A., Gololobov A.Yu., Popov V.I. Modeling the electron temperature distribution in F2 region of high-latitude ionosphere for winter solstice conditions. Sol.-Terr. Phys. 2016, vol. 2, iss. 4, pp. 54–61. DOI:https://doi.org/10.12737/19424.
11. Gololobov A.Yu., Golikov I.A. Numerical modeling of the influence of IMF on the large-scale structure of the ionosphere taking into account the misalignment of the poles. Bull. North-Eastern Federal University. 2024, vol. 21, iss. 1, pp. 45–57. DOI:https://doi.org/10.25587/2222-5404-2024-21-1-45-57.
12. Gololobov A.Yu., Golikov I.A., Popov V.I. Modeling of the influennce of magnetospheric storm on the large-scale structure of the high-latitude ionosphere for winter solstice conditions. Sol.-Terr. Phys. 2025, vol. 11, iss. 2, pp. 88–98. DOI:https://doi.org/10.12737/stp-112202509.
13. Grigoryev A.V., Starodubtsev S.A., Grigoryev V.G., Usoskin I.G., Mursula K. Fluctuations of cosmic rays and IMF in the vicinity of interplanetary shocks. Adv. Space Res. 2008, vol. 41, iss. 6, pp. 955–961. DOI:https://doi.org/10.1016/j.asr.2007.04.044.
14. Hayakawa H., Ebihara Y., Mishev A., Koldobskiy S., Kusano K., Bechet S., Yashiro S., et al. The solar and geomagnetic storms in 2024 May: A flash data report. Astrophys. J. 2025, vol. 979, iss. 1, 26 p. DOI:https://doi.org/10.3847/1538-4357/ad9335.
15. Ievenko I.B. Effects of magnetospheric activity on the plasmasphere as inferred from observations of diffuse aurorae and SAR arcs. Geomagnetism and Aeronomy. 1999, vol. 39, iss. 6, pp. 697–703.
16. Ievenko, I.B. SAR-arc observation during the overlap registration of an energetic plasma with a plasmapause aboard the Van Allen Probe. J. Atmos. Solar-Terr. Phys. 2020, vol. 209, 105386. DOI:https://doi.org/10.1016/j.jastp.2020.105386.
17. Ievenko I.B., Alekseyev V.N. Effect of the substorm and storm on the SAR arc dynamics: A statistical analysis. Geomagnetism and Aeronomy. 2004, vol. 44, iss. 5, pp. 592−603.
18. Ievenko I.B., Parnikov S.G. Ground-based and satellite observations of the SAR arc in the MLT evening sector at the beginning of the magnetic storm on March 17, 2015. Geomagnetism and Aeronomy. 2020, vol. 60, iss. 6, pp. 737–746. DOI:https://doi.org/10.1134/S0016793220050096.
19. Kolesnik A.G., Golikov I.A. Three-dimensional model of the high-latitude F region taking into account the displacement between geographical and geomagnetic coordinates. Geomagnetism and Aeronomy. 1982, vol. 22, iss. 3, pp. 435–439.
20. Korsakov A.A., Kozlov V.I., Karimov R.R. Sudden phase anomalies of VLF radio transmitters signals (11.9 kHz) of RSDN-20 system registered in Yakutsk during 2009–2017. Proc. SPIE, 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics. Moscow, Russian Federation, 2021, 119167X. DOI:https://doi.org/10.1117/12.2603367.
21. Kozlov V.I., Starodubtsev S.A., Grigoryev V.G., Baishev D.G., Makarov G.A., Pavlov E.A., Karimov R.R., et al. Analysis of helio- and geophysical events in October–November 2021 from comprehensive observations of SHICRA SB RAS. Sol.-Terr. Phys. 2025, vol. 11, iss. 1, pp. 7–26. DOI:https://doi.org/10.12737/stp-111202502.
22. Kozyra J.U., Nagy A.F., Slater D.W. High-altitude energy source(s) for stable auroral red arcs. Rev. Geophys. 1997, vol. 35, iss. 2, pp. 155–190.
23. Kumar A., Kumar S. Solar flare effects on D-region ionosphere using VLF measurements during low- and high-solar activity phases of solar cycle 24. Earth, Planets and Space. 2018, vol. 70, iss. 29, pp. 1–14. DOI:https://doi.org/10.1186/s40623-018-0794-8.
24. Lazzús J.A., Salfate I. Report on the effects of the May 2024 Mother’s day geomagnetic storm observed from Chile. J. Atmos. Solar–Terr. Phys. 2024, vol. 261, 106304. DOI:https://doi.org/10.1016/j.jastp.2024.106304.
25. Mizun Yu.G. Polar Ionosphere. Leningrad: Nauka Publ., 1980, 216 p.
26. Moiseev A.V., Popov V.I., Starodubtsev S.A. Comparative analysis of the propagation of magnetic variations and equivalent current vortices of geomagnetic Pc5 pulsations along the meridian and azimuth. Geomagnetism and Aeronomy, 2024a, vol. 64, iss. 4, pp. 548–566. DOI:https://doi.org/10.31857/S0016794024040093.
27. Moiseev A.V., Popov V.I., Starodubtsev S.A. Investigating azimuthal propagation of Ps5 geomagnetic pulsations and their equivalent current vortices from ground-based and satellite data. Sol.-Terr. Phys. 2024b, vol. 10, iss. 3, pp. 97–107. DOI:https://doi.org/10.12737/stp-103202412.
28. Petukhova A.S., Petukhov I.S., Petukhov S.I. Theory of the formation of Forbush decrease in a magnetic cloud: Dependence of Forbush decrease characteristics on magnetic cloud parameters. Astrophys. J. 2019, vol. 880, iss. 1, art. no. 17. DOI:https://doi.org/10.3847/1538-4357/ab2889.
29. Petukhova A.S., Petukhov I.S., Petukhov S.I. Forbush decrease characteristics in a magnetic cloud. Space Weather. 2020, vol. 18, iss. 12, art. no. e02616. DOI:https://doi.org/10.1029/2020SW002616.
30. Piersanti M., Oliveira D.M., D’Angelo G., Diego P., Napoletanj G., Zesta E. On the geoelectric field response to the SSC of the May 2024 super storm over Europe. Space Weather. 2025, vol. 23, e2024SW004191. DOI:https://doi.org/10.1029/2024SW004191.
31. Pilipenko V.A., Chernikov A.A., Soloviev A.A., Yagova N., Sakharov Y., Kudin D.V., Kostarev D., et al. Influence of space weather on the reliability of the transport system functioning at high latitudes. Russian J. Earth Sciences. 2023, vol. 23, ES2008. DOI:https://doi.org/10.2205/2023ES000824.
32. Ram T., Veenadhari S., Dimri B., Bulusu J., Bagiya M., Gurubaran S., Parihar N., et al. Super‐intense geomagnetic storm on 10–11 May 2024: Possible mechanisms and impacts. Space Weather. 2024, vol. 22, e2024SW004126. DOI:https://doi.org/10.1029/2024SW004126.
33. Silber I., Price C. On the use of VLF narrowband measurements to study the lower ionosphere and the mesosphere–lower thermosphere. Surveys in Geophysics. 2017, vol. 38, iss. 2, pp. 407–441. DOI:https://doi.org/10.1007/s10712-016-9396-9.
34. Starodubtsev S.A., Transkii I.A., Verigin M.I., Kotova G.A. Intensity fluctuations of cosmic rays and of the interplanetary magnetic field in the region of interaction of solar-wind streams with different velocities. Geomagnetism and Aeronomy. 1996, vol. 36, pp. 241–245.
35. Starodubtsev S.A., Zverev A.S., Gololobov P.Yu., Grigoriyev V.G. Cosmic ray fluctuations and MHD waves in the solar wind. Sol.-Terr. Phys. 2023, vol. 9, iss. 2, pp. 73–80. DOI:https://doi.org/10.12737/stp-92202309.
36. Tavares M., Santiago M.A.M. What are traveling convection vortices? Brazilian J. Physics. 1999, vol. 29, iss. 3, pp. 524–528.
37. Vorobjev V.G., Yagodkina O.I., Katkalov Yu.V. Auroral precipitation model and its application to ionospheric and magnetospheric studies. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 157–171. DOI:https://doi.org/10.1016/j.jastp.2013.05.007.
38. Weimer D.R. A flexible, IMG dependent model of high-latitude electric potentials having “space weather” applications. Geophys. Res. Lett. 1996, vol. 23, no. 18, pp. 2549–2552.
39. Wendt V., Schneider H., Banyś D., Hansen M., Clilverd M.A., Raita T. Why does the October effect not occur at night? Geophys. Res. Lett. 2024, vol. 51, iss. 7, pp. e2023GL107445. DOI:https://doi.org/10.1029/2023GL107445.
40. URL: http://eng.sepc.ac.cn/ (accessed February 10, 2025).
41. URL: http://www.intermagnet.org (accessed February 10, 2025).
42. URL: http://magdas2.serc.kyushu-u.ac.jp/station/index.html (accessed February 10, 2025).
43. URL: http://www.isee.nagoya-u.ac.jp/dimr/PWING/en/ (accessed February 10, 2025).
44. URL: http://stjarnhimlen.se/comp/tutorial.html (accessed February 10, 2025).
45. URL: ftp://ftp.swpc.noaa.gov/pub/lists/ace2/ (accessed February 10, 2025).
46. URL: ftp://ftp.swpc.noaa.gov/pub/lists/ace/ (accessed February 10, 2025).
47. URL: https://omniweb.gsfc.nasa.gov/ow.html (accessed February 10, 2025).
48. URL: https://www.ysn.ru/~starodub/CosmicRayFluctuations/index.html (accessed February 10, 2025).



