с 01.01.2022 по настоящее время
Паратунка, Камчатский край, Россия
Горно-Алтайск, Республика Алтай, Россия
A device for measuring geomagnetically induced currents (GISs) has been created which is installed at the Ininskaya power substation in the Altai Republic. Since April 2024, periodic monitoring of GIS in the 110 kV power transformer grounding neutral has been carried out. GISs were registered during geomagnetic disturbances up to 138 mA, which, taking into account the parallel grounding of the Ininskaya substation and the Ininskaya solar power plant, means the presence of 1.3 A total GIS in the grounding of both objects. GISs are shown to occur during Pc3 and Pc5 geomagnetic pulsation observations. The qualitative agreement has been found between the GIC measurement results and the model values calculated from Baigazan magnetic station data in the approximation of the homogeneous Earth’s crust conductivity. The grounding resistance is shown to exert an effect on recorded GICs.
geomagnetically induced currents, monitoring, simulation, geomagnetic storms, geomagnetic pulsation, Gorny Altai
1. Albert D., Schachinger P., Bailey R.L., et al. Analysis of long-term GIC measurements in transformers in Austria. Space Weather. 2022, vol. 20, e2021SW002912. DOI:https://doi.org/10.1029/2021SW002912.
2. Alekseev D., Palshin N., Kuvshinov A. Compilation of 3D global conductivity model of the Earth for space weather applications. Earth, Planets and Space. 2015, vol. 67, no. 1, p. 108. DOI:https://doi.org/10.1186/s40623-015-0272-5.
3. Bailey R.L., Leonhardt R., Möstl C., et al. Forecasting GICs and geoelectric fields from solar wind data using LSTMs: Application in Austria. Space Weather. 2022, vol. 20, e2021SW002907. DOI:https://doi.org/10.1029/2021SW002907.
4. Bakiyanov A.I., Betyov A.A., Gvozdarev A.Yu., Uchaikin E.O. A new magnetical station –– Baygazan (Russian Altay, Teletskoe lake). Proc. 6th Science Readings of Y.P. Bulashevich “Deep Structure, Geodynamics, Thermal Field of the Earth, Interpretation of Geophysical Fields”]. Ekaterinburg, 2011, pp. 29–32 (In Russian).
5. Barannik M.B., Danilin A.N., Kolobov V.V., Selivanov V.N., Kat’kalov Y.V., Sakharov Y.A. A system for recording geomagnetically induced currents in neutrals of power autotransformers. Instruments and Experimental Techniques, 2012, vol. 55, iss. 1, pp. 110–115. DOI:https://doi.org/10.1134/S0020441211060121.
6. Barbosa C.S., Hartmann G.A., Pinheiro K.J. Numerical modeling of geomagnetically induced currents in a Brazilian transmission line. Adv. Space Res. 2015, vol. 55, iss. 4, pp. 1168–1179. DOI:https://doi.org/10.1016/j.asr.2014.11.008.
7. Bedrosian PA, Love J.J. Mapping geoelectric fields during magnetic storms: Synthetic analysis of empirical United States impedances. Geophys. Res. Lett. 2015, vol. 42, pp. 10160–10170. DOI:https://doi.org/10.1002/2015GL066636.
8. Bolduc L. GIC observations and studies in the Hydro-Québec power system. J. Atmos. and Solar-Terr. Phys. 2002, vol. 64, pp. 1793–1802. DOI:https://doi.org/10.1016/S1364-6826(02)00128-1.
9. Boteler D.H., Pirjola R.J. Numerical calculation of geoelectric fields that affect critical infrastructure. Intern. J. Geosciences. 2019, vol. 10, pp. 930–949. DOI:https://doi.org/10.4236/ijg.2019.1010053.
10. Caraballo R., González-Esparza J.A., Pacheco C.R., Corona-Romero P. Improved model for GIC calculation in the Mexican power grid. Space Weather. 2023, vol. 21, no.1, e2022SW003202. DOI:https://doi.org/10.1029/2022SW003202R.
11. Espinosa K.V., Padilha A.L., Alves L.R., et al. Estimating geomagnetically induced currents in southern Brazil using 3D Earth resistivity model. Space Weather. 2023, vol. 21, e2022SW003166. DOI:https://doi.org/10.1029/2022SW003166.
12. Gaunt C.T., Coetzee G. Transformer failures in regions incorrectly considered to have low GIC-risk. 2007 IEEE Lausanne Power Tech. Lausanne, Switzerland, 2007, pp. 807–812. DOI:https://doi.org/10.1109/PCT.2007.4538419.
13. Gil A., Berendt-Marchel M., Modzelewska R., et al. Review of geomagnetically induced current proxies in mid-latitude European countries. Energies. 2023, vol. 16, p. 7406. DOI:https://doi.org/10.3390/en16217406.
14. Gusev Yu.P., Lkhamdongdog A.D., Monakov Yu.V., Yagova N.V. Sign-constant current influence on flux linkage balance of power transformer’s primary and secondary winding Releinaya zashchita i avtomatizatsiya [Relay Protection and Automation]. 2020, no. 2(39), pp. 20–29. (In Russian).
15. Gvozdarev A.Yu., Kazantzeva O.V., Uchaikin E.O., Yadagaev E.G. Estimation of geomagnetically induced currents in the Altai republic power system according to the Baygazan magnetic station data. Bull. Kamchatka Regional Association Educational and Scientific Center (KRASEC). Phys. and Math. Sci. 2023, vol. 45, no. 4, pp. 190–200. DOI:https://doi.org/10.26117/2079-6641-2023-45-4-190-200.
16. Hübert J., Beggan C. D., Richardson G.S., et al. Validating a UK geomagnetically induced current model using differential magnetometer measurements. Space Weather. 2024, vol. 22, e2023SW003769. DOI:https://doi.org/10.1029/2023SW003769.
17. Kozyreva O.V., Pilipenko V.A., Dobrovolsky M.N., et al. Database of geomagnetic observations in Russian Arctic and its application for estimates of the space weather impact on technological systems. Sol.-Terr. Phys. 2022, vol. 8, iss. 1, pp. 39–50. DOI:https://doi.org/10.12737/stp-81202205.
18. Mac Manus D.H., Rodger C.J., Dalzell M., Thomson A.W.P., et al. Long-term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver. Space Weather. 2017, vol. 15, pp. 1020–1038. DOI:https://doi.org/10.1002/2017SW001635.
19. Mac Manus D.H., Rodger C.J., Renton A., et al. Implementing geomagnetically induced currents mitigation during the May 2024 “Gannon” G5 storm: Research informed response by the New Zealand power network. Space Weather. 2025, vol. 23, e2025SW004388. DOI:https://doi.org/10.1029/2025SW004388.
20. Marsal S., Torta J.M., Curto J.J., et al. Validating GIC modeling in the Spanish power grid by differential magnetometry. Space Weather. 2021, vol. 19, iss. 12. DOI:https://doi.org/10.1029/2021SW002905.
21. Marshall R.A., Dalzell M., Waters C.L., et al. Geomagnetically induced currents in the New Zealand power network. Space Weather. 2013, vol. 10, iss. 8, S08003. DOI:https://doi.org/10.1029/2012SW000806.
22. Matandirotya E., Cilliers P.J., Van Zyl R.R. Modeling geomagnetically induced currents in the South African power transmission network using the finite element method. Space Weather. 2015, vol. 13, pp. 185–195. DOI:https://doi.org/10.1002/2014SW001135.
23. Matandirotya E., Cilliers, P.J., Van Zyl R.R., et al. Differential magnetometer method applied to measurement of geomagnetically induced currents in Southern African power networks. Space Weather. 2016, vol. 14, no. 3, pp. 221–232. DOI:https://doi.org/10.1002/2015SW001289.
24. Muchini P., Matandirotya E., Mashonjowa E. Analysis of transformer reactive power fluctuations during adverse space weather. Intern. J. Energy and Power Engineering. 2024, vol. 18, no. 2, pp. 16–21.
25. Novikov I.S., Pospeeva E.V. Neotectonics of eastern Gorny Altai: Evidence from magnetotelluric data. Russian Geology and Geophysics. 2017, vol. 58, no. 7, pp. 769–777. DOI:https://doi.org/10.1016/j.rgg.2017.06.001.
26. Parkinson W.D. Introduction to Geomagnetism — Edinburg, Scottish Academic Press, 1983.
27. Pilipenko V.A. Space weather impact on ground-based technological systems. Sol.-Terr. Phys. 2021. vol. 7, iss. 3, pp. 68–104. DOI:https://doi.org/10.12737/stp-73202106.
28. Pospeeva E.V., Vitte L.V., Potapov V.V., Sakharova M.A. Magnetotelleric soundings in the region of recent tectonic and seismic activity (by the example of Gorny Altai). Geofizika [Geophysics], 2014, no. 4, pp. 8–16. (In Russian).
29. Pulkkinen A., Lindahl S., Viljanen A., Pirjola R. Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system. Space Weather. 2005, vol. 3, S08C03. DOI:https://doi.org/10.1029/2004SW000123.
30. Selivanov V.N., Aksenovich T.V., Bilin V.A., et al. Database of geomagnetically induced currents in the main transmission line “Northern transit”. Sol.-Terr. Phys. 2023, vol. 9, iss. 3, pp. 93–101. DOI:https://doi.org/10.12737/stp-93202311.
31. Sivokon V.P. A new method for detecting geomagnetically induced currents. Russian Electrical Engineering. 2021, vol. 92, no. 11, pp. 685–690. DOIhttps://doi.org/10.3103/S1068371221110146.
32. Sokolova O.N., Sakharov Ya.A., Gritsutenko S.S., Korovkin N.V. Utilization-based energy optimization energy storage. Izvestiya Rossiiskoi Akademii Nauk. Energetika. [Proc. Russian Academy of Sciences. Power Engineering]. 2019, no. 5, pp. 33–52. (In Russian). DOI:https://doi.org/10.1134/S0002331019050145.
33. Švanda M., Smičková A., Výbošťoková T. Modelling of geomagnetically induced currents in the Czech transmission grid. Earth Planets and Space. 2021, vol. 73, no. 1, p. 229. DOI:https://doi.org/10.1186/s40623-021-01555-5.
34. Skhema i programma razvitiya elektroenergetiki RA na 2022–2026 [Scheme and development program of the Altai Republic electric power industry for 2022–2026 (approved by the Decree of the Head of the Rep. Altai dated 04/29/2021 No.118-u)]. Gorno-Altaisk: Ministry of Regional Development Altai Republic, 2021. URL: https://docs.cntd.ru/document/574723771 (accessed May 13, 2025). (In Russian).
35. Taran S., Alipour N., Rokni K., Hosseini S., Shekoofa O., Safari H. Effect of geomagnetic storms on a power network at midlatitudes. Adv. Space Res. 2023, vol. 71, iss. 12, pp. 5453–5465. DOI:https://doi.org/10.1016/j.asr.2023.02.027.
36. Tren’kin A.A., Voevodin S.V., Koblova O.N., et al. Simulating a strong storm impact on Russian interconnected power system of Center. Electrichestvo [Electricity]. 2023, no. 2, pp. 37–49. (In Russian).
37. Trivedi N.B., Vitorello I., Kabata W., Dutra S.L.G., Padilha A.L., Bologna M.S., et al. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study. Space Weather. 2007, vol. 5, iss. 4. S04004. DOI:https://doi.org/10.1029/2006SW000282.
38. Uchaikin E.O., Gvozdarev A.Y. Organization of monitoring of even harmonics amplitudes in the electricity networks of the Altai Republic as an indicator of space weather. 2023 IEEE XVI International Scientific and Technical Conference “Actual Problems of Electronic Instrument Engineering” (APEIE). Novosibirsk, 2023, pp. 450–454. DOI:https://doi.org/10.1109/APEIE59731.2023.10347597.
39. Uchaikin E., Gvozdarev A., Kudryavtsev N. Assessment of the geomagnetically induced currents impact on the power transformers cores of the Altai Republic 110 kV power grid. E3S Web of Conferences. 2024, vol. 542, p. 02002. DOI:https://doi.org/10.1051/e3sconf/202454202002.
40. Uchaikin E.O., Kudin D.V., Gvozdarev A.Yu, Design of induction coil magnetometer based on INT-1 sensor and results of monitoring of magnetical station “Baygazan” Proc. 14th Young Scientists’ Conference “Interaction of Fields and Radiation With Matter”. Irkutsk, 2015, pp. 267–268. (In Russian).
41. Uchaikin E., Gvozdarev A., Kudryavtsev N., Yadagaev E.G. On the impact of geomagnetically induced currents on the energy system of the Altai Republic and Siberia. Russian Electrical Engineering. 2025. vol. 96, no. 6, pp. 477–484. DOI:https://doi.org/10.3103/S1068371225700622.
42. Vodyannikov V.V., Gordienko G.I., Nechaev S.A., et al. Geomagnetically induced currents in power lines from data on geomagnetic variations. Geomagnetism and Aeronomy. 2006, vol. 46, no. 6, pp. 809–813. DOI:https://doi.org/10.1134/S0016793206060168.
43. Yagova N.V., Pilipenko V.A., Sakharov Y.A., Selivanov V.N. Spatial scale of geomagnetic Pc5/Pi3 pulsations as a factor of their efficiency in generation of geomagnetically induced currents. Earth, Planets and Space. 2021, pp. 73–88. DOI:https://doi.org/10.1186/s40623-021-01407-2.
44. Yagova N.V., Sakharov Y.A., Pilipenko V.A., Selivanov V.N. Long-period pulsations as an element of space weather influence on technological systems. Sol.-Terr. Phys. 2024, vol. 10, iss. 3, pp. 136–146. DOI:https://doi.org/10.12737/stp-103202415.
45. Watari S., Nakamura S., Ebinara Y. Measurement of geomagnetically induced currents (GIC) around Tokyo. Earth, Planets and Space. 2021, vol. 73, p. 102. DOI:https://doi.org/10.1186/s40623-021-01422-3.
46. Zhang J.J., Wang C., Sun T.R., et al. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation. Space Weather. 2015, vol, 13, pp. 643–655. DOI:https://doi.org/10.1002/2015SW001263.
47. URL: https://powersystem.info (accessed May 12, 2025).
48. URL: https://kp.gfz-potsdam.de/en/ (accessed May 12, 2025).
49. URL: https://obsebre.es/en/variations/rapid (accessed May 12, 2025).




