Иркутск, Россия
Иркутск, Россия
Иркутск, Россия
Новосибирск, Новосибирская область, Россия
Иркутск, Россия
Иркутск, Россия
Паратунка, Россия
Иркутск, Россия
Иркутск, Россия
УДК 537.87 Распространение и излучение электромагнитных волн
Effects of the May 10–13, 2024 extreme magnetic storm in the Asian region of Russia have been studied using experimental data from vertical and oblique sounding of the ionosphere with a continuous chirp signal. Features of ionospheric disturbances induced by the magnetic storm have been revealed: the long-lasting negative ionospheric disturbance that was manifested as a significant decrease in F2-layer critical frequencies and maximum observed frequencies of radio paths; the absence of HF signal reflections from F-region due to sporadic Es layer and increased absorption of HF signals; recording of auroral and oblique Es layers; the long-lasting G-effect during local daytime during which the F1-layer critical frequency exceeded the F2-layer critical frequency; the dusk enhancement of electron density and F2-layer peak height. We have found a correlation of variations in ionospheric parameters and the maximum observed frequencies of HF radio wave propagation modes with spatial location of the main ionospheric trough and the equatorial boundary of the diffuse electron precipitation zone.
ionospheric disturbances, radio wave propagation, magnetosphere, ionosphere, main ionospheric trough, diffuse electron precipitation
1. Benkova N.P., Kozlov E.F., Kochenova N.A., Samorokin N.I., Fligel M.D. Structure and Dynamics of the Subauroral Ionosphere. Moscow, Nauka Publ., 1993, 144 p. (In Russian).
2. Besprozvannaya A.S., Ben’kova N.P. Large-scale structural features of the F2 layer at high latitudes. Proc. of International Symposium “Physical Processes in the Trough Region during Disturbances”. Garzau, GDR (31.03 – 04.04.1987). Berlin, 1988, pp. 25–39. (In Russian).
3. Bilitza D., Pezzopane M., Truhlik V., Altadill D., Reinisch B. W., Pignalberi A. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, vol. 60, no. 4, p. e2022RG000792. DOI:https://doi.org/10.1029/2022RG000792.
4. Blanch E., Altadill D., Boska J., Burešová D., Hernández-Pajares M. November 2003 event: Effects on the Earth’s ionosphere observed from ground-based ionosonde and GPS data. Ann. Geophys. 2005, vol. 23, no. 9. pp. 3027–3034. DOI:https://doi.org/10.5194/angeo-23-3027-2005.
5. Buonsanto M.J. A case study of the ionospheric storm dusk effect. J. Geophys. Res.: Space Phys. 1995, vol. 100, no. A12, pp. 23857–23869. DOI:https://doi.org/10.1029/95JA02697.
6. Burke W.J., Huang C.Y., Marcos F.A., Wise J.O. Interplanetary control of thermospheric densities during large magnetic storms. J. Atmos. Solar-Terr. Phys. 2007, vol. 69, iss. 3, pp. 279–287. DOI:https://doi.org/10.1016/j.jastp.2006.05.027.
7. Collado-Villaverde A., Muñoz P., Cid C. Classifying and bounding geomagnetic storms based on the SYM-H and ASY-H indices. Natural Hazards. 2024, vol. 120, no. 2. pp. 1141–1162. DOI:https://doi.org/10.1007/s11069-023-06241-1.
8. Daglis I.A. The storm-time ring current. Space Sci. Rev. 2001, vol. 98, no. 3, pp. 343–363. DOI:https://doi.org/10.1023/A:1013873329054.
9. Deminov M.G., Romanova E.B., Tashchilin A.V. Origination of G conditions in the ionospheric F region depending on solar and geomagnetic activity. Geomagnetism and Aeronomy. 2011, vol. 51, no. 5, pp. 669–675.
10. Deminov M.G., Shubin V.N. Empirical model of the location of the main ionospheric trough. Geomagnetism and Aeronomy. 2018, vol. 58, no. 3, pp. 348–355. DOI:https://doi.org/10.1134/S0016793218030064.
11. Echer E., Gonzalez W.D., Tsurutani B.T. Interplanetary conditions leading to superintense geomagnetic storms (Dst≤–250 nT) during solar cycle 23. Geophys. Res. Lett. 2008, vol. 35, no. 6, L06S03. DOI:https://doi.org/10.1029/2007GL031755.
12. Fang X., Randall C.E., Lummerzheim D., Solomon S.C., Mills M.J., Marsh D.R., et al. Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons. J. Geophys. Res.: Space Phys. 2008, vol. 113, A09311. DOI:https://doi.org/10.1029/2008JA013384.
13. Galperin Yu.I. , Crasnier J., Sauvaud J.-A., Lisakov Iu.V., Nikolaenko L.M., Sinitsyn V.M., Khalipov V.L. The diffuse auroral zone. I – Model of the equatorial boundary of diffuse auroral electron precipitation zone in the evening and near midnight sectors. Kosmicheskie issledovaniya [Cosmic Res]. 1977, vol. 15, no. 3, pp. 421–434. (In Russian).
14. Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a geomagnetic storm? J. Geophys. Res.: Space Phys. 1994, vol. 99, no. A4, pp. 5771–5792. DOI:https://doi.org/10.1029/93JA02867.
15. Grozov V.P., Ilyin N.V., Kotovich G.V., Ponomarchuk S.N. Software system for automatic interpretation of ionosphere sounding data. Pattern Recognition and Image Analysis. 2012, vol. 22, no. 3, pp. 458–463. DOI:https://doi.org/10.1134/S1054661812030042.
16. Khalipov V.L., Galperin Yu.I., Lisakov Yu.V., et al. Diffuse auroral zone. II. Formation and dynamics of the polar edge of the subauroral ionospheric trough in the evening sector. Kosmicheskie issledovaniya [Cosmic Res]. 1977, vol. 15, no. 5, pp. 708–723. (In Russian).
17. Iyemori T., Rao D.R.K. Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation. Ann. Geophys. 1996, vol. 14, no. 11, pp. 608–618. DOI:https://doi.org/10.1007/s00585-996-0608-3.
18. Kamide Y., Winningham J.D. A statistical study of the “instantaneous” nightside auroral oval: The equatorward boundary of electron precipitation as observed by the Isis 1 and 2 satellites. J. Geophys. Res. 1977, vol. 82, iss. 35, pp. 5573–5588. DOI:https://doi.org/10.1029/JA082i035p05573.
19. Kurkin V.I., Ponomarchuk S.N., Smirnov V.F. On the influence of the main ionospheric trough on the characteristics of HF signals on oblique sounding paths. Solnechno-zemnaya fizika [Sol.-Terr. Phys.]. 2004, no. 5, pp. 124–127. (In Russian).
20. Kurkin V.I., Zolotukhina N.A., Ponomarchuk S.N., Oinats A.V., Ratovskii K.G. Specific features of ionospheric disturbances accompanying the magnetic storm of January 14–20, 2022. Geomagnetism and Aeronomy. 2024a, vol. 64, no. 6, pp. 869–880. DOI:https://doi.org/10.1134/S0016793224600784.
21. Kurkin V.I., Medvedeva I.V., Podlesnyi A.V. Effect of sudden stratosphere warming on characteristics of medium-scale traveling ionospheric disturbances in the Asian region of Russia. Adv. Space Res. 2024b, vol. 73, no. 7, pp. 3613–3623. DOI:https://doi.org/10.1016/j.asr.2023.09.020.
22. Laryunin O.A., Kurkin V.I., Rybkina A.A., Podlesnyi A.V. Determination of the velocity of ionospheric disturbances from the dynamics of additional U-shaped traces on ionograms. Geomagnetism and Aeronomy. 2024, vol. 64, no. 2, pp. 235–241. DOI:https://doi.org/10.1134/S0016793223601084.
23. Loewe C.A., Prolss G.W. Classification and mean behavior of magnetic storm. J. Geophys. Res. 1997, vol. 102, no. A7, pp. 14209–14213. DOI:https://doi.org/10.1029/96JA04020.
24. Mikhailov S.Ya. Ambiguity of the reconstruction of plasma frequency profiles from a given height-frequency characteristic and their discernibility for oblique propagation of HF radio waves in an isotropic ionosphere. Radiophysics and Quantum Electronics. 2000, vol. 43, no. 10, pp. 766–782.
25. Mishin V.V., Lunyushkin S.B., Mikhalev A.V., Klibanova Yu.Yu., Tsegmed B., Karavaev Yu.A., et al. Extreme geomagnetic and optical disturbances over Irkutsk during the 2003 November 20 superstorm. J. Atmos. Solar-Terr. Phys. 2018, vol. 181, pp. 68–78. DOI:https://doi.org/10.1016/j.jastp.2018.10.013.
26. Möller H.G. Backscatter results from Lindau-II. The movement of curtains of intense irregularities in the polar F-layer. J. Atmos. Terr. Phys. 1974, vol. 36, no. 9, pp. 1487–1501. DOI:https://doi.org/10.1016/0021-9169(74)90227-X.
27. Nishida A. Geomagnetic diagnosis of the magnetosphere. Springer Nature, 1978, 256 p.
28. Panasyuk M.I., Kuznetsov S.N., Lazutin L.L., Alexeev I.I., Antonova A.E., Belenkaya E.S., et al. Magnetic storms in October 2003. Cosmic Res. 2004, vol. 42, no. 5, pp. 489–534.
29. Pavlov A.V. Vibrationally excited N2 and O2 in the upper atmosphere: A review. Geomagnetism and Aeronomy. 2011, vol. 51, no. 2, pp. 143–169. DOI:https://doi.org/10.1134/S0016793211020149.
30. Pilkington G.R., Münch J.W., Braun H.J., Möller H.G. Comparison of ground HF backscatter and simultaneous particle and plasma pause measurements from a polar orbiting satellite. J. Atmos. Terr. Phys. 1975, vol. 37, no. 2, pp. 337–347. DOI:https://doi.org/10.1016/0021-9169(75)90115-4.
31. Pirog O.M., Polekh N.M., Romanova E.B., Tashchilin A.V., Zherebtsov G.A. The main ionospheric trough in the East Asian region: Observation and modeling. J. Atmos. Solar-Terr. Phys. 2009, vol. 71, no. 1, pp. 49–60. DOI:https://doi.org/10.1016/j.jastp.2008.10.010.
32. Podlesny A.V., Brynko I.G., Kurkin V.I., Berezovsky V.A., Kiselyov A.M., Petukhov E.V. Multifunctional chirp ionosonde for monitoring the ionosphere. Geliogeofizicheskie issledovaniya [Heliogeophysical research]. 2013, no. 4, pp. 24–31. (In Russian).
33. Polekh N.M., Ratovsky K.G., Deminov M.G., Kolpakova O.E., Kushnarenko G.P. Morphology of the G condition occurrence over Irkutsk. Adv. Space Res. 2013, vol. 52, no. 4, pp. 575–580. DOI:https://doi.org/10.1016/j.asr.2013.04.013.
34. Polekh N.M., Romanova T.B., Ratovsky K.G., Shi J.K., Wang X., Wang G.J. Studying the G condition occurrence in different latitudes under solar minimum: Observation and modeling. J. Atmos. Solar-Terr. Phys. 2015, vol. 130, no. 8, pp. 132–141. DOI:https://doi.org/10.1016/j.jastp.2015.06.001.
35. Ponomarchuk S.N., Grozov V.P. Automatic interpretation of oblique sounding ionograms based on hybrid algorithms. Sol.-Terr. Phys. 2024, vol. 10, iss. 2, pp. 102–110. DOI:https://doi.org/10.12737/stp-102202410.
36. Ponomarchuk S.N., Zolotukhina N.A. Disturbances of ionospheric radio channel during magnetic storms in November–December 2023. Sol.-Terr. Phys. 2024, vol. 10, no. 4, pp. 84–98. DOI:https://doi.org/10.12737/stp-104202410.
37. Ponomarchuk S.N., Grozov V.P., Kotovich G.V. Technique of ionospheric parameters automatic determination from data of vertical sounding with a continuous chirp signal. Proc. SPIE 12780: 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 2023, 127806Q. DOI:https://doi.org/10.1117/12.2688438.
38. Ponomarchuk S.N., Kurkin V.I., Ilyin N.V., Penzin M.S. HF radio path modeling by waveguide approach. Sol.-Terr. Phys. 2024, vol. 10, no. 2, pp. 93–101. DOI:https://doi.org/10.12737/stp-102202409.
39. Prölss G.W., Brace L.H., Mayr H.G., Carignan G.R., Killeen T.L., Klobuchar J.A. Ionospheric storm effects at subauroral latitudes: A case study. J. Geophys. Res.: Space Phys. 1991, vol. 96, no. A2, pp. 1275–1288. DOI:https://doi.org/10.1029/90JA02326.
40. Sergeev V.A., Tsyganenko N.A. Magnitosfera Zemli [Earth's magnetosphere]. Moscow, Nauka Publ., 1980, 174 p. (In Russian).
41. Spogli L., Alberti T., Bagiacchi P., Cafarella L., Cesaroni C., Cianchini G., et al. The effects of the May 2024 Mother’s Day superstorm over the Mediterranean sector: from data to public communication. Ann. Geophys. 2024, vol. 67, no. 2, PA218. DOI:https://doi.org/10.4401/ag-9117.
42. Tashchilin A.V., Romanova E.B. Role of magnetospheric convection and precipitation in the formation of the “dusk effect” during the main phase of a magnetic storm. Geomagnetism and Aeronomy. 2011, vol. 51, no. 4, pp. 468–474. DOI:https://doi.org/10.1134/S0016793211040074.
43. Uryadov V.P., Kurkin V.I., Vertogradov G.G., Vertogradov V.G., Ponyatov A.A., Ponomarchuk S.N. Features of propagation of HF signals on mid-latitude paths under conditions of geomagnetic disturbances. Radiophysics and Quantum Electronics. 2004, vol. 47, no. 12, pp. 933–946.
44. Uryadov V.P., Ponyatov A.A., Vertogradov G.G., Vertogradov V.G., Kurkin V.I., Ponomarchuk S.N. Dynamics of the auroral oval during geomagnetic disturbances observed by oblique sounding of the ionosphere in the Eurasian longitudinal sector. Int. J. Geomagn. Aeron. 2005, vol. 6, GI1002. DOI:https://doi.org/10.1029/2004GI000078.
45. URSI Handbook of Ionogram Interpretation and Reduction. Second edition. November 1972. 335 p.
46. Yasyukevich Yu.A., Vasiliev R.V., Rubtsov A.V., Alsatkin S.S., Artamonov M.F., Beletsky A.B., et al. Extreme magnetic storm of May 10–19, 2024: Coupling between neutral and charged components of the upper atmosphere and the effect on radio systems. Doklady Earth Sciences. 2025, vol. 520, no. 33. DOI:https://doi.org/10.1134/S1028334X24604978.
47. Zhang Y., Paxton L.J. An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, no. 8-9, pp. 1231–1242. DOI:https://doi.org/10.1016/j.jastp.2008.03.008.
48. Zherebtsov G.A., Mizun Yu.G., Mingalev V.S. Physical Processes in the Polar Ionosphere. Moscow, Nauka Publ., 1988, 232 p. (In Russian).
49. Zherebtsov G.A., Pirog O.M., Polekh N.M. The ionospheric situation in the Eastern Asian longitudinal sector during the geoactive period October–November 2003. Geomagnetism and Aeronomy. 2005, vol. 45, no. 1, pp. 101–108.
50. URL: https://cdaweb.gsfc.nasa.gov (accessed May 14, 2025).
51. URL: https://cdaw.gsfc.nasa.gov/CME_list/ (accessed May 14, 2025).
52. URL: https://kp.gfz-potsdam.de/en/data (accessed May 14, 2025).
53. URL: https://ssusi.jhuapl.edu/gal_edr-aur_cs (accessed May 14, 2025).
54. URL: https://wdc.kugi.kyoto-u.ac.jp/dst_provisional/index.html (accessed May 14, 2025).
55. URL: https://www.swpc.noaa.gov/noaa-scales-explanation (accessed May 14, 2025).
56. URL: http://ckp-rf.ru/ckp/3056/ (accessed May 14, 2025).



